
6.837 Introduction to Computer Graphics 
Assignment 4: Grid Acceleration 

Due Wednesday October 15, 2003 at 11:59pm 

This week, you will make your ray tracer faster using a spatial-acceleration 
data structure. You will implement grid acceleration, using fast ray marching. 
To convince yourself of the efficiency of your acceleration, you will analyze a set 
of statistics about your computation. 

In order to test your grid structure before using it for acceleration, you 
will implement the grid as a modeling primitive. Volumetric modeling can be 
implemented by affecting a binary opaqueness value for each grid cell. This is 
the equivalent of the discrete pixel representation of 2D images. Each volume 
element (or voxel) will be rendered as a solid cube. You can very easily rasterize 
simple primitives in a grid; for example, to rasterize a sphere, simply test the 
distance between the center of a voxel and the sphere center. 

After your grid modeling primitive is implemented and debugged, you will 
use it for acceleration. As a preprocess, you will insert all scene objects in the 
cells of the grid that they span. In order to test your object insertion code, you 
will render cells that contain one more more objects as opaque. 

Then, you will modify your ray tracer to use the grid for fast ray casting. 
You will use your ray marching code and intersect all the objects stored in 
each traversed cell. You must pay attention to intersections outside the cell and 
implement early rejection to stop marching when you have found an appropriate 
intersection. 

For this assignment, you may assume that no transformations are used. This 
way you may effectively ignore the group hierarchy and insert all primitives by 
scanning the scene in a depth-first manner. 

1 Ray Tracing Statistics 

Use the provided RayTracingStats class to compute various statistics including 
the number of pixels, the number of rays cast, the number of ray/primitive 
intersections, the number of cells in the grid, the number of grid cells traversed 
with the ray marching technique, and the total running time. Add the following 
timing and counter increment functions provided in the RayTracerStatistics 
class to your code: 

1 



•	 Call RayTracingStats::Initialize(int width, int height,

int num_x, int num_y, int num_z,

const Vec3f &min, const Vec3f &max)


before beginning computation, 

•	 Call RayTracingStats::IncrementNumNonShadowRays()

for each non-shadow ray (a call to RayTracer::TraceRay()),


•	 Call RayTracingStats::IncrementNumShadowRays()

for each shadow ray,


•	 Call RayTracingStats::IncrementCellsTraversed()

for each cell traversed (a call to MarchingInfo::nextCell()),


•	 Call RayTracingStats::IncrementNumIntersections() 
for each ray/primitive intersection (not groups and transforms), and 

•	 At the end of your main loop, print the various statistics by calling 
RayTracingStats::PrintStatistics(). 

From these numbers we can compute the average number of rays per pixel, 
intersections per ray, grid cells per ray, rays per second, etc. Verify that the 
statistics are reasonable for simple test scenes. To verify that the number of rays 
cast is correct, add a -no_shadows command line argument to your program. 
Test this part of the assignment with examples from last week. 

2 Grid 

Derive from Object3D a Grid class for an axis-aligned uniform grid. Initially 
a Grid will simply store whether each cell (voxel) is occupied so it can be 
rendered opaque or transparent. The constructor takes two Vec3fs describing 
the minimum and maximum coordinates of the grid, three integers describing 
the number of cells along the three axes, and a Material*. 

Grid::Grid(Vec3f min, Vec3f max,

int nx, int ny, int nz, Material *m);


An array of nx × ny × nz bools stores whether each voxel is opaque or transpar­
ent. Implement the Grid::rasterizeSphere(Vec3f center, float radius) 
method that sets the opaqueness of each voxel by testing whether its center is 
inside the sphere described by center and radius. 

Test your sphere-rasterization routine on a small grid (e.g., 4x4) by printing 
the values of the array. 

2 



3 Fast Ray Marching with 3DDDA 

To implement fast ray marching using 3DDDA, you will need a place to store 
the information for the current ray and the current grid cell. Implement a 
MarchingInfo class that stores the current value of tmin; the grid indices i, j 
and k for the current grid cell; the next values of intersection along each axis 
(tnext_x, tnext_y , and tnext_z ); the marching increments along the three axes 
(dtx, dty , dtz ), and signx, signy, and signz. To render the occupied grid cells 
for visualization you will also need to store the surface normal of the cell face 
which was crossed to enter the current grid. Write the appropriate accessors 
and modifiers. 

The intersection of a ray with a Grid will use two helpers to initialize the 
march and to move to the next cell. 

3.1 Initialization 

First write: 

void Grid::initializeRayMarch(MarchingInfo &mi,

const Ray &r, float tmin) const;


This function sets the increments and the information relative to the first cell 
traversed by the ray. Make sure to treat all three intersection cases: when the 
origin is inside the grid, when it is outside and the ray hits the grid, and when 
it is outside and it misses the grid. 

Test your routine with a very simple grid, for example a 4x4 grid from (-
2,-2,-2) to (2,2,2). Use simple rays for which you can manually test the result. 
For example, initialize the cell march for a ray with origin (0.5, 0.5, 0.5), or for 
a ray with origin (-2.5, 0.5,0.5) and direction (1, 0, 0). Also test more general 
cases. 

3.2 Marching step 

Next, implement: 

void MarchingInfo::nextCell(); 

This update routine choose the smallest of the next t values (tnext_x, tnext_y , 
and tnext_z ), and updates the corresponding cell index. 

Test your ray marching code using the same strategy as for initialization. 
For example, use a ray with origin (-3, -2, 0.5) and directions such as (5, 2, 
0). Note that the problem reduces to a 2D grid because the z component is 0. 
Manually compute the marching sequence, and print the steps taken by your 
code. Try other origins and directions to make sure that your code works for all 
orientations (in particular, test both positive and negative components of the 
direction). 

3 



3.3 Putting it all together 

Finally, use these two helpers in your main grid-ray intersection routine. If the 
new cell is opaque, return the appropriate normal depending on which axis you 
advanced last. Test cases to visualize a simple sphere rasterization on your grid 
are provided. 

4 Reducing the Number of Intersections 

In order to use the grid as an acceleration structure, we must insert the scene 
primitives (but not groups and transforms) into the appropriate cells of the 
grid. First add two Vec3fs to your Object3D class to store the axis-aligned 
bounding box of each object. Add code to each subclass to compute these 
bounds (including Group and Transform). Verify that the computed scene 
bounding box is correct for various inputs. 

Next modify the Grid class to also store pointers to the objects whose bound­
ing box overlaps the cell. You may use the provided Object3DVector class to 
store an arbitrary number of objects per cell. 

Finally, use the grid as a spatial acceleration for your ray caster. Implement 
two ray casting methods, RayCast (loops through all the objects in the scene as 
in previous assignments) and RayCastFast (uses the spatial acceleration data 
structure). Update your command line parsing so that the grid size may be 
specified at the command line: e.g., -grid 5 5 5. If no grid dimensions are 
provided, use the non-accelerated ray casting method. 

Pay attention to objects overlapping multiple cells — don’t incorrectly return 
intersections outside of the current cell. 

5 What to Turn In 

For each test scene, try different grid sizes and report the choice yielding the 
fastest time, and discuss the effect of this parameter on the running time. 

Provide a README.txt file that discusses any problems you encountered, how 
long it took to complete the assignment, any extra credit work that you did and 
how we can test the new features. 

6 Ideas for Extra Credit 

Experiment with other acceleration data structures (recursive/nested grid, oc­
tree, non-nested grid, bounding volume hierarchy, etc.); Supersampling; Other 
distribution ray tracing effects; Flatten a scene graph which contains transfor­
mations by concatenating nested transformations; Compute a tight bounding 
box for each transformed triangle primitives by transforming the vertices; Test 
if the plane of the triangles intersects the grid cells; Volumetric rasterization 

4 



of other fun primitives; Use marking to prevent multiple intersections with a 
primitive that overlaps multiple cells; etc. 

7 Other 

Object3DVector (object3dvector.h) 

Stores an arbitrary number of Object3D pointers. You may use STL 
(Standard Template Library) instead if you prefer. 

Ray Tracing Statistics (raytracing_stats.h & raytracing_stats.C) 

A class of static member variables to store and compute various ray tracing 
statistics. 

Parsing input files (scene_parser.h, and scene_parser.C) 

The SceneParser class has been extended to rasterize a sphere on a grid 
to help you debug your Grid class. 

New command line arguments 

-no_shadows 
(don’t cast any shadow rays) 

-grid 5 5 5 
(dimensions for the spatial acceleration data structure) 

-visualize_grid 
(render the grid cells opaquely) 

-visualize_grid_count 
(OPTIONAL: render the grid cells opaquely, and use color to indicate cells 
which contain more objects) 

5 


