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1) For each of (a)-(e) below: If the statement is true, write TRUE. If the statement is
false, write FALSE. (Please do not use the abbreviations T and F.) No explanations are
required in this problem.
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(a) (5 pts.) If f(z,v) is a continuously differentiable function on R?, and g—$5 = 0 at every

point of R?, then there exist constants @ and b such that f(z,y) = az + b for all = and y.
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(b) (5 pts.) The annulus in R? defined by 9 < z* 4+ 32 < 16 is simply connected.

(¢) (5 pts.) If f(z,y) is a function whose second derivatives exist and are continuous
everywhere on R?, and

f(Oa 0) = fx(0,0) = fy(0>0) = fm(0,0) = fyy(070) =0
and f,,(0,0) # 0, then f has a saddle point at (0,0).

L+ TTRUE

(d) (5 pts.) If Ais a 3 x 3 matrix, and b is a column vector in R?, and the square system
Ax = b has more than one solution x, then det A = 0.

TRUE
L

(e) (5 pts.) If F is a continuously differentiable 3D vector field on R? such that curl F = 0
everywhere, and A and B are two points in R?, then the value of [, F - dr is the same for
every piecewise smooth path C from A to B.
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2) (a) (5 pts.) For which pairs of real numbers (a,b) does the matrix

a b
A=10 0
10

have an inverse?
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(b) (10 pts.) For such pairs (a,b), compute A~
(Its entries may depend on a and b. Suggestion: Once you have the answer, check it!)
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3) Let L be the line that passes through (7,3, —1) and is perpendicular to the plane P
with equation 2z 4+ y — z = 6. Find the point where L intersects P.
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4) A particle is moving in the plane so that its distance from the origin is increasing at a
constant rate of 2 meters per second, and its argument 6 is increasing at a rate of 3 radians
per second. At a time when the particle is at (4, 3), what is its velocity vector?
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5) Let f(z,y) = 2°> — zy + y°. Find the minimum value of the directional derivative Dy f
at the point (2,1) as u varies over unit vectors in the plane.
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6) Find an equation for the tangent plane to the surface z% + y* + 3z = 8 at the point
(2,1,1).
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7) Let S be the part of the sphere 22 + 32 + 22 = 9 where z,y, z are all positive. Find the
minimum value of the function s 8 1

Z 9 &
on S, or explain why it does not exist.
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8) Suppose that s(z,y) and t(z,y) are differentiable functions such that it is possible to
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9) Let R be the parallelogram in R? bounded by the lines
y=z—1, y—a:— —5 2z, y=17-2.

Evaluate fj +yd dy. Y \‘S(,(,
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10) Let F be a vector field defined everywhere on R? except the origin, pointing radially

outward with magnitude |F| = 1/p, where p is the distance to the origin. Let Sg be the
sphere of radius R centered at the origin

(a) (15 pts.) Compute the outward flux of F across Sg, in terms of the positive number
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(b) (10 pts.) Let T" be the 3D region between the spheres S; and Ss, i.e., the region where
1<V +P+2 <3,
What is [[[ divFdv?
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11) Let R be the solid triangle in R? with vertices at (0, 1), (2,3), and (0, 3). Let C be its
boundary traversed counterclockwise. Let F = 22(i — j).

(a) (20 pts.) Evaluate j{ F - dr by converting it to a double integral over the region R.
c

N{}‘ E (7‘/1[ ‘71>

\/f cuel (F} Ax oi} 7
R

O S——

J-Z% d%dg /

Jua

B —La A»Z\d’\ dg
\

/ / ! : \
‘ / ‘Q* ()" (2>) (@ + () (i\;) 2 F o
A“a J M 1+(>

(b) (5 pts.) Is there a function f (z,y) whose gradient equals F everywhere? (Explain
your reasoning. )
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12) Set up an iterated integral in cylindrical coordinates whose value is the moment of
inertia of a solid spherical planet of radius a and constant density § with respect to an axis
through the center of the planet. (Assume that the center of the planet is at the origin, and
that the axis of rotation is the z-axis.)

Do not evaluate the integral!
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13) Let S be the lower hemisphere defined by Bty 4+ =1and2<0. Let F=
(y + 2,5 — z,2¢”). Compute the outward (i.e., downward) flux of curl F across S.
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This is the end!
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