. Ol lntroduchion A
c\ec ;:.a\ Ey\% wnee e fv% %%
Ce ™M uwte e Scienc 211

Erom Weitken ¢ Nov Z§(201\ é ?f% ; gf"/

6@('4.'&(0\/\5

Sdecte Estimation D6 >
Feiem\ or Tope. Lo |
A Cu=zz) e L e

)
e\ Ty) / s\

Dssume 20 pis
State Estimation

Now, let’s assume a particular environment for the cat and mouse, and that the cat doesn’t know
exactly where the mouse is. The cat and mouse live in a world that is a 1 by 10 grid. On each step,
the mouse moves to one of the two neighboring (E, W) grid squares uniformly at random, unless
it is currently at location 0 or 9, in which case it stays where it is with probability 0.5 and moves
to the neighboring square with probability 0.5.

The cat always knows where it is in this world, but not where the mouse is.

The cat’s actions are to move east and west, and they always have the intended effect (except when
they would cause it to move off the edge of the world, in which case they have no effect). The
observation is the result of listening; on each step, the cat will “hear” a distance between 0 and 10.
If it is 0, then the mouse is on the same square as the cat. If it is 1, then it is one square away; if
2, two squares, away; etc. If, for example, the cat is on location 1 and it “hears” a distance of 5,

%

& T T ITTT]

14

then the mouse must be on location 6 (because for it to be 5 squares away in the other direction,
it would have to be off the end of the world.)

Question 19: Imagine that cat starts at location 5 and observes that the mouse is 3 squares
away. What is the cat’s belief state about the location of the mouse?

wfﬂ“"(EVTT&LWE
B e

)

Question 20: Now, let the cat move east (and the mouse moves as described above). Before
making any observation, what is the state of the system? (List both the cat’s location and
the belief state about the mouse’s location).

2 &g;,,ga8?’§

PR

ol @ﬁg:i\aon 2 & % Note dnese cecaly

1
A
g
o= CHE A / agsuMmg @k,\ U th

MG 3 = .25 Adicection whach s
MO 3 =.28 ok cleac Srom the

Mmeq =.1¥ sdaked Q(\Dbi@ A

Question 21: If the cat now observes that the mouse is 3 squares away, what is the new belief
state about the location of the mouse?

R'= m@®B3 = .50

mGq =, %0

15

Question 22: If, instead, the cat observes that the mouse is 5 squares away (after the transition
in question 20), what is the new belief state about the location of the mouse?

o

B= M@ = [0

Question 23: Now, we’ll construct a class that can do belief state estimation for this problem.
The class definition and the first line of the initialization method are provided below.

class CatMouseState ():
def __init__(self, catlLoc):

Write the rest of the initialization method, which takes as input the known location of
the cat, and defines two instance variables: self.catLocation, which contains an integer
from 0 to 9 indicating the cat’s location; and self.mouseBelief which contains a list of
10 probabilities indicating the cat’s belief about the mouse’s location. The initial value of
self .mouseBelief should be a representation of the distribution corresponding to having
no information about the location of the mouse.

' L § °
ik (se\€, catloc)s
déi\: - A\ T om= | DN AN L

<e\l, cok Llocation = catlec

se\S. mouse Beliel = Zo-o\ 1:0.1, 2:0.1,3:0.4,
Lg 02,§0e (pﬁ,\,}o,

(;“.3;
0.1, qto.l % [/

16

Question 24: Provide the bodies of the following methods for the CatMouseState class. The
procedures should modify the components of the object, and need not return any values.
actionUpdate should update the state (cat’s location and mouse belief state) given the cat’s
action (but remember that the mouse also moves), and observationUpdate should update

the belief state based on its observation of the mouse.

Cat’s action can be ’E’ or W’
def actionUpdate(self, action):

if aetion=n Bl and seft.eatlocation <]
se\t catlocakion+=\

e\if ochion=="W'and se
se (€ . catlecation—=1

IC. caX Location>0

T Uedate the prouse it e e
M(/}f%di,ar = 70,110,210, 310, 436, €:0,6:0,7:0, 8aa,<f;.:>§

for possiblily in selk. vouse Belie€, keys)

L QO$§{€«‘;{(~;’{» R e 1
newRelie ‘{Pogg'\é;u_},a_\] o SQ\Q.m@use%e\\@Q[QOSS a&%:'rzi:!*c

,'(\ ﬁv{v“'\i’) 4%4
;T’Pbgb‘ﬂi“‘% ¢ ; vyl v,
_) gl « 1t =cel\C. 3eliek (possibulily | ¥
r\ew%&(\QQL @aes«%__m\) g\ ce\C.nmouseBeliek CQ *jj (
Ty == | 2

i gossibiliky=ca orlghssibility »
new Beliel QGSSQQHQ#%E{-:SQ\G.McHgg@&\\ﬁ@[QOSS\&l(q{r.}j% &0
cel€. mouce Beliel =vewsRelied

Observation: distance to mouse, as described above.

def observationUpdate (self, obs):
4 Licet co Mmp ute e(ane)
foc P\ selk.mouse Reliek, keys
igqg(ge\Q,qurLo(:q"v'\O‘f*' P)‘-: s *
self.mouse Gelief [p1=0

) ’r\ !ﬂ“‘:!(' J
’iiJm em £o puke total Qc?«u cm i
Lor e W selb mouse Beliet keys U
i

/>:

{

Tdotal t+ = se\b.mouse Peliek r#
for o in !, mouse Beliek xeys(

selC. mouse®eliel [¢] /= total

¥

6.01 Final Exam — Fall 2008 9

Friend or Foe (15 points)

Imagine that you are defending a city and there is an aircraft flying toward you. It may be
important to know whether that aircraft is a ’friend’ or a foe’ (enemy). Assume you have
a radar sensor that can give you noisy information about the type of the aircraft that is
approaching.

We will model this situation as an HMM, in which:

e The state space is described by two components d and a, where d is the number of miles
(0, 1, ..., 10) away the target is and a is its attitude to you, which is either >friend’
or *foe’. The values of d correspond to ranges of distance, so that, in fact, d == 0 means
the aircraft is somewhere between 0 and 1 miles away, etc.

e The observation space is {’oFriend’, ’oFoe’}, which stands for observed friend and
observed foe.

e There are no actions (or, if you prefer, a single action, which just waits a time step).
e The transition model is specified in the following Python method, which takes a state s

as input and returns a DDist over possible next states:

def transitionModel(s, i):
note that the i (the input action) is ignored

(d, a) = s
if d == 0:

return DDist({(0, a): 1.0}) # ¢ %ou&(ﬁ next Yo e, must GM%‘ere
else

return DDist({(d, a): 0.5, (d-1, a): 0.5}) # plherwise SN olig nce of
MOV (g, closer
e The observation model is as described in the following Python method, which takes a
state s as input and returns a DDist over possible observations:

def observationModel(s):

(d, a) = s
if a == ’friend’: Do

return DDist({’oFriend’: 1 - d / 20.0, ’0oFoe’ : d / 20.0})
else:

return DDist({’oFoe’: 1 - d / 20.0, ’oFriend’ : d / 20.0})
Questions:

1. Assume that the aircraft are approaching with a constant velocity. What velocity, in
miles per time step, would generate the transition model over distance intervals given in

the transition model? /)
§ k ¢ %
0. M\\e,/‘mﬁgﬁ(

Answer:

6.01 Final Exam — Fall 2008 10

2. Provide an alternative transition model in which friendly aircraft move 1.5 miles per time
step (and the foes move at the same rate as the given model.)

del Arrw.«gt%(ow Moc&(l (‘;, LBZ

(o,) =¢

\Q di==0 % R
e«Lqrv\ DD:S;(({(OIC’): \‘D§>

elee?

- t 8
l«? o et poe A) - B
teturn ODist 'é (O‘;Q\):O‘S/*(d \ -O'fg)

e"‘;e L1 >
it b el S FeE .9 8) 50,5)
| I S~ e i Aw > v @ E) 1 7 7
3. At what distance is our sensor most useful?

Answer: 0

How does it behave at that distance?

Answer: | \{ Hre plane is »rrwﬁvilc) 06> = (00X o & .."C ”.'r‘f(,lg',a_d{q
¥ - 4 J a
tr v \E-C’\ Qﬁ?; ’0’65- = {OG \ ot OFoe

4. Using the original transition and observation models, if the initial belief state, bg, is

DDist ({(10, ’friend’) : 0.5, (10, ’foe’): 0.5})

then what would b, be, after receiving observation oy =’oFriend’.

Answer: DD\SIT(% (\0, ‘gr(@\,v\(:;\‘i) '. D.S\\M lQog’); os“i\)

5. After that, what would the belief state by be?
i DO (5‘\,_1 { (kof Leriend N . 0.2‘;/ (q, Lelend I}fzy/ (£0€t>: 0.254) (:’;I t{acj}:ﬁ.a?wﬂv

6. How many non-zero entries are there in b4 (the answer will be the same for any sequence
of observations)?

Ly
-

Rp

/" bo 22 p,-2% 04 =S pocsibledigk
9 (‘:[), -~ Y - - ! 05;31'6{’ fa !
Answer: lO (/ L by = o g P € sta

Oy

® gossible stal
7. Starting again from the initial belief state, and imagining the following observation se-

quence: [’oFriend’, ’oFoe’, ’oFriend’, ’oFoe’], is it more likely that the aircraft

is a friend or a foe?

Answer: (:Df&(closed dftances are more accutate and thece is

& Wigher (kelthood of {/mv‘v i each s(»eg, MeANtiAg

eUers Obcervakion is *’C b move qcCuyate Yhan the
preck (:ii-/ua one

0.01 Final Exam — Fall 2008 13

A Puzzle (20 points)

Consider the standard Eight Puzzle. It has 8 tiles arranged on a 3 by 3 grid. Here is one
possible arrangement of the tiles:

2 |lf 8|l 3

11| ©

5 |
ul =

=W

7(21

Hy 4

5

o

The tiles neighboring an empty space can be slid into the space. We can think of the
operations on the puzzle as moving the space up, down, left, or right. It obviously cannot
be moved beyond the bounds of the puzzle. In the example above, if we were to slide the
space up, then the 6 tile would be in the bottom row and the space would be in the middle.

We can solve this problem using search. A state of the search would be an array of numbers
(and None for the space) showing the location of each tile on grid. A goal state would be
some specified arrangement of the tiles.

Assuming we apply pruning rule 1, but not the others, how many descendants are there for
the state shown above:

e at level 1 (immediate children)?

Answer: 3 \/

o at level 2 (children of level 1)?

Answer: %

6.01 Final Exam — Fall 2008 14

7.1 Search

We would like to identify the advantages and disadvantages of each of the following search
methods for this problem. We assume, as always, that we use pruning rules 1 and 2.

Enter T or F in the boxes provided if the following statement is true or false, respectively.
You can assume that it is possible to reach the goal state from the initial state.
e depth-first, no dynamic programming:

This method is guaranteed to find a path.

[_E]l/ The path that is found is guaranteed to be short.

E/The same board state may be visited multiple times.

*’The agenda is likely to remain short (relative to the other methods).

° depth-ﬁ/rst, with dynamic programming:
,J'—:](This method is guaranteed to find a path.
{ %]/ Ahe path that is found is guaranteed to be short.
\f

//The same board state may be visited multiple times.

agenda is likely to remain short (relative to the other methods).

e breadth-first, no dynamic programming:
This method is guaranteed to find a path.
The path that is found is guaranteed to be short.
““ The same board state may be visited multiple times.
The agenda is likely to remain short (relative to the other methods).

® breadth;ﬁrst, with dynamic programming;:
'/ This method is guaranteed to find a path.
‘/The path that is found is guaranteed to be short.
/The same board state may be visited multiple times.
@ The agenda is likely to remain short (relative to the other methods).

7.2

6.01 Final Exam — Fall 2008 15

State machine

We can describe the puzzle and its evolution using a state machine, in much the same way

we described the wolf-goat-cabbage problem. We will specify the state with two components:

e A pair of row, column indices, indicating where the space is; and

o A list of three lists of items; each item is a digit between 1 and 8, or None. This describes
the state of the board.

So, for example, we could represent the puzzle state above as:
(2, v, [[2, 8, 31, [1, 6, 41, [7, None, 5]1)

Technically speaking, we don’t need the first component of the state (it could always be
computed from the list of three lists), but it will simplify our coding if we maintain both
representations.

A skeleton of the state machine defining the eight puzzle is shown on the next page. Fill in
the definition of getNextValues. If a move would produce and illegal state, then the new
state should be the same as the current state. The output of the machine should just be the
next state.

[2,8,9]
({6 1]

6.01 Final Exam — Fall 2008 { 2 Nwe. ST 16
[T

class EightPuzzle(SM):
startState = ((2, 1), [[2, 8, 3], [1, 6, 4], [7, None, 511)
size = 3
offgets = {2ap’: (-1, 0), ‘deown’: (1, 0), ’left’: (0, -1), ‘right’: (0, 1)}
legalInputs = [’up’, ’down’, ’left’, ’right’]

def getNextValues(self, state, inp):
((p1, p2), board) = state

bcopy = copy.deepcopy (bo rd)
(0% ¢ DR —cfeets Ling]
(\"] C)- e (\71\-\~O@] ?2&—t0&>

W re=2 and 6 >=0 and c¢=2 andd ¢ >2=01¢

led, p2) = (r,0)
Tefurn (((?ﬁ 192>/ 50@‘(“"\\)[((\95; Pz'\)z &’wf'@l‘*\l‘“))

