MASSACHUSETTS INSTITUTE OF TECHNOLOGY Department of Electrical Engineering and Computer Science # 6.013 Electromagnetics and Applications #### **Student Name:** Final Exam 1 Closed book, no calculators Please note the two pages of formulas provided at the back; the laser and acoustic expressions have been revised slightly. There are 10 problems; some are on the back sides of the sheets. For full credit, please **simplify all expressions**, present **numerical answers to the extent practical** without a calculator or tedious computation, and place your **final answers within the boxes provided**. You may leave natural constants and trigonometric functions in symbolic form $(\pi, \varepsilon_0, \mu_0, \eta_0, h, e, \sin(0.9), \sqrt{2}, \text{ etc.})$. To receive partial credit, provide all related work on the same sheet of paper and give brief explanations of your answer. Spare sheets are at the back. ### **Problem 1.** (25/200 points) Two square capacitor plates in air have separation d, sides of length b, and charge $\pm Q$ as illustrated. Fringing fields can be neglected. a) What is the capacitance C_a of this device? $$C = \frac{Q}{V}$$ $$C_a = \frac{2b^2}{8d}$$ $$E_0 = \frac{QE_0}{b^2}$$ $$V = E_0 d = \frac{QE_0 d}{b^2}$$ $$C = \frac{Q}{Q \in d} = \frac{b^2}{\varepsilon \cdot d}$$ 4/8 NOTE: I deducted half marks for flipping Please turn sheet over to answer parts (b) and (c). $$C_b = \frac{6b^2}{\epsilon_0 d}$$ Since there cannot be charge within the interdor a perfect conductor the result is to maintain the same charge over a smaller distance c) What is the magnitude and direction of the force \overline{f} on the new plate of Part (b) as a function of the insertion distance L. Please express your answer as a function of the parameters given in the figure. $$\overline{f} = \frac{45}{0} \frac{Q^2 \epsilon_0 d}{b L^2}$$ $$\omega_e = \frac{1}{2} cv^2 \times \frac{0}{9}$$ $$= \frac{1}{2} c(\frac{Q}{c})^2$$ $$= \frac{1}{2} c^2$$ $$= \frac{1}{2} c^2$$ $$\Delta \omega_e = \frac{1}{2} Q^2 - \frac{1}{2} Q^2 = \frac{1}{2} Q^2 \left(\frac{1}{2} P^2 - \frac{1}{2} \right)$$ $$= \frac{1}{2} Q^2 \left(\frac{1}{2} P^2 - \frac{1}{2} \frac{1}{2} \right)$$ $$= \frac{1}{2} Q^2 \left(\frac{1}{2} P^2 - \frac{1}{2} \frac{1}{2} \right)$$ $$= -\frac{1}{2}Q^{2}(.99)\frac{\mathcal{E}_{od}}{bL5/16/09}$$ $$= -\frac{199}{2}Q^{2}\mathcal{E}_{od}$$ $$= bL$$ #### **Problem 2.** (20/200 points) The plate separation of a lossless parallel-plate TEM line many wavelengths long (length D = 100.25λ) very slowly increases from end A to end B, as illustrated. This increases the characteristic impedance of the line from Z₀ at the input end A, to 4Z₀ at the output end B. This transition from A to B is so gradual that it produces no reflections. End B is terminated with a resistor of value 4Z_o a) What is the input impedance \underline{Z}_A seen at end A? Explain briefly. ZA = Zo Explanation: Because impredence is voltage fourment the input voltage/current ratio is Zo and there is no reflected wave to reduce the input voltage. b) If the sinusoidal (complex) input input voltage is \underline{V}_A , what is the output voltage \underline{V}_B ? Since impedences $V_B = V_{AC} - 2j V_a$ That junction $V_B = V_{AC} - 2j V_a$ #### **Problem 3.** (25/200 points) At t = 0 a switch connects a voltage V to a passive air-filled short-circuited TEM line of length D and characteristic impedance Z_0 , as illustrated. Please sketch and quantify dimension: a) The line voltage v(z) at t = D/2c. 8/8 b) The current $i_B(t)$ through the short circuit for 0 < t < 2D/c. The time 48 axis is correct but I deducted half marks here for forgetting the factor of 2 c) The current $i_A(t)$ from the voltage source (z = 0) for 0 < t < 3D/c. have qualified as a carry fund since it is intrinsically linked to (b), however, I deducted marks for omitting the same current jump as in (b) in the last 1/3 rd of the time series ### **Problem 4.** (30/200 points) A 100-ohm air-filled lossless TEM line is terminated with a 100-ohm resistor and a $10^{-10}/2\pi$ Farad capacitor in series, as illustrated. It is driven at 100 MHz. What fraction $F = |\underline{\Gamma}_L|^2$ of the incident a) power is reflected from this load? $$Z_{L} = 100 + \frac{1}{j\omega C}$$ = 100 + J/0.10-10 5 = 100 - j.1000 The math here is correct, but I to 108 made a simple carry FWD mistake of converting throw 160 MHz to 107 instead (USED 10 MHz 160 MHz to 108 instead of 160 MHz $$R = 100 \Omega$$ $$Z_0 = 100 \Omega$$ $$C = 10^{-10}/2\pi [F]$$ $$\underline{F} = \frac{1}{\sqrt{104}} \frac{1}{5}$$ $$T_{L} = \frac{2}{2} - \frac{2}{200} = \frac{(100 - j1000) - 100}{1000 + 100}$$ $$= \frac{-j1000}{200 - j1000} + \frac{1000}{1000}$$ $$|T|^2 = \frac{1000}{|1000|^2} - \frac{1000}{|1000|^2} = \frac{1000}{|1000|^2} = \frac{1000}{|1000|^2}$$ What is the minimum distance D(meters) from the load at which the line current $|\underline{I}(z)|$ is maximum? You may express your answer in terms of the angle β (degrees) shown on the Smith Chart. $$i(z) = i_4 - i_-$$ Please turn sheet over to answer part (c). c) Can we match this load by adding another capacitor in series somewhere and, if so, at what distance D and with what value C_m ? Can we match? YES NO $$D = 7.5 \cdot 10^{-3} \text{m} \times \frac{3}{4} + \frac{3}{120} \times \frac{10^{-10}}{2\pi} \text{ F}$$ $$C_{m} = \frac{10^{-10}}{2\pi} \text{ F}$$ 7/10 This is essentially a rounding of 2/3 of the 10 pts. $$\lambda = \frac{10^7}{c} = \frac{10^7}{3.16^6} = \frac{1}{30} \text{ m} \cdot 3.10^{-1} \text{ m}$$ for this question. $\lambda = \frac{1}{3.16^6} = \frac{1}{30} \text{ m} \cdot 3.10^{-1} \text{ m}$ ### **Problem 5.** (20/200 points) A flat perfect conductor has a surface current in the xy plane at z = 0 of: $$\overline{\underline{J}}_s = \hat{x} J_o e^{-jbx} [A/m].$$ a) Approximately what is \underline{H} in the xy plane at z = 0+? $$\underline{\underline{H}}(z=0+) = -\sqrt{2} \int_{0}^{\infty} e^{-jbx}$$ b) How might one easily induce this current sheet at frequency f [Hz] on the surface of a good conductor? Please be reasonably specific and quantitative. By applying an EM plane wave of frequency f to the surface, which has an x-component wavenumber b and an. H in the go direction we could induce this current sheet. To induce this current one might: 5/10 (not enough detail) Again, correct, but E didn't include the magnitude of the wave or its Please turn sheet over for Problem 6. # <u>Problem 6.</u> (10/200 points) A certain evansescent wave at angular frequency ω in a slightly lossy medium has $\underline{\overline{E}} = \hat{y} \, E_o e^{\alpha(x \cdot 0.01z) - jbz}$; assume $\mu = \mu_o$. What is the distance D between phase fronts for this wave? | | D= | |---|-------| | $e^{a(x-0.012)-jbz}$ | 2tt b | | decay along wore character \$\hat{x}\$ and \$-\hat{z}\$ along z direction direction will be maximum at values of \$\hat{z} = nZT\$ | | | D - 2TT | 10/ | ### **Problem 7.** (25/200 points) A resonator is filled with a dielectric having $\epsilon = 4\epsilon_0$ and has dimensions b, a, and d along the x, y, and z directions, respectively, where d > a > b. $$\int_{mng} = \frac{C}{2} \sqrt{\left(\frac{m}{a}\right)^2 + \left(\frac{n}{b}\right)^2 + \left(\frac{q}{d}\right)^2}$$ $$\int_{mng} = \frac{C}{4} \left(\frac{1}{b^2}\right) = C$$ $$\int_{101} C$$ b) What is the polarization of the electric vector \overline{E} at the center of the resonator for this lowest frequency mode? Polarization of Ēis: linear in ât direction CARRY FWD half marks for correctly identifying linear polarization, but wrong exis (again, could be a earry fund from (a) but I deducted anyways) Please turn sheet over to answer part (c). c) What is the Q of this resonance if the dielectric has a slight conductivity σ ? Hint: a ratio of integrals may suffice, so the integrals might not need to be computed. $$Q = \frac{\omega_0 W_T}{P diss} = \frac{\pi r \int_{101}^{101} \int_{V_4}^{E|E|^2} dv}{\int_{V_4}^{E|E|^2} dv} = \frac{\int_{001}^{E} \frac{E}{8\pi \sigma}}{8\pi \sigma} = \frac{C}{8\pi \sigma}$$ $$P_{diss} = I^2 R = \int (OE)^2 I$$ ### **Problem 8.** (20/200 points) A certain transmitter transmits P_T watts of circularly polarized radiation with antenna gain G_o (in circular polarization) toward an optimally oriented matched short-dipole receiving antenna (gain = 1.5) located a distance R away. The wavelength is λ . a) In the absence of any obstacles or reflections, what power P_R is received? $$P_{R} = \frac{1.5P_{T}G_{o}\lambda^{2}}{4\pi R^{2}}$$ b) A large metal fence is then erected half way between the transmitter and receiver, and perpendicular to the line of sight. Fortunately it has a round hole of area A centered on that line of sight. Assume the hole is sufficiently small that the electrical phase of the incident wave is constant over its entirety. What power is received now? $$P_{R} = \frac{AP_{\tau}G_{0}}{TR^{2}}$$ X Precsence = Par = APTGo 70 gain here will be a sinc function of 0 which at 8=0=3 # **Problem 9.** (15/200 points) An ideal lossless three-level laser has the illustrated energy level structure. Level 1 is Δ Joules above the ground state, and Level 2 is 3Δ Joules above the ground state. All rates of spontaneous emission A_{ij} have the same finite value except for A_{21} , which is infinite. $$\begin{array}{c} E_2 \\ E_1 \\ E_0 \end{array}$$ $$\begin{array}{c} \Delta \text{ [J]}$$ a) What should be the laser frequency f_L [Hz]? $f_L[Hz] =$ b) What is this laser's maximum possible efficiency $\eta = (laser\ power)/(pump\ power)$? $$N = \left(\frac{1}{3}\right)\left(\frac{1}{3}\right)$$ n. « Aij Please turn sheet over for Problem 10. #### **Problem 10.** (10/200 points) Two monopole (isotropic) acoustic antennas lying on the z axis are aligned in the z direction and separated by 2λ , as illustrated. They are fed 180° out of phase. In what directions θ does this acoustic array have maximum gain $G(\theta)$? Simple expressions suffice. If more than one direction has the same maximum gain, please describe all such directions. θ= (1) 11/4, 311/4, 511/4, 711/4 have maximum gain. should be 2008 - (1/4), + cos - (3/4) not T/4, 31/4 Gain will be maximum when both wave fronts are in phase $\cos^2\left(\frac{ak}{2}\sin\theta + \alpha\right)$ $\cos^2\left(\frac{p\lambda}{2}\sin\theta + \alpha\right)$ pent null 0/10