MASSACHUSETTS INSTITUTE OF TECHNOLOGY

Department of Electrical Engineering and Computer Science

6.013 Electromagnetics and Applications

Student Name:

Final Exam

1

Closed book, no calculators

Please note the two pages of formulas provided at the back; the laser and acoustic expressions have been revised slightly. There are 10 problems; some are on the back sides of the sheets. For full credit, please **simplify all expressions**, present **numerical answers to the extent practical** without a calculator or tedious computation, and place your **final answers within the boxes provided**. You may leave natural constants and trigonometric functions in symbolic form $(\pi, \varepsilon_0, \mu_0, \eta_0, h, e, \sin(0.9), \sqrt{2}, \text{ etc.})$. To receive partial credit, provide all related work on the same sheet of paper and give brief explanations of your answer. Spare sheets are at the back.

Problem 1. (25/200 points)

Two square capacitor plates in air have separation d, sides of length b, and charge $\pm Q$ as illustrated. Fringing fields can be neglected.

a) What is the capacitance C_a of this device?

$$C = \frac{Q}{V}$$

$$C_a = \frac{2b^2}{8d}$$

$$E_0 = \frac{QE_0}{b^2}$$

$$V = E_0 d = \frac{QE_0 d}{b^2}$$

$$C = \frac{Q}{Q \cdot d} = \frac{b^2}{\varepsilon \cdot d}$$

4/8 NOTE: I deducted half marks for flipping

Please turn sheet over to answer parts (b) and (c).

$$C_b = \frac{6b^2}{\epsilon_0 d}$$

Since there cannot be charge within the interdor a perfect conductor the result is to maintain the same charge over a smaller distance

c) What is the magnitude and direction of the force \overline{f} on the new plate of Part (b) as a function of the insertion distance L. Please express your answer as a function of the parameters given in the figure.

$$\overline{f} = \frac{2}{\sqrt{45}} \frac{Q^2 \epsilon_0 d}{b L^2}$$

$$We = \frac{1}{2} CV^{2}$$

$$= \frac{1}{2} \frac{Q^{2}}{C}$$

$$= \frac{1}{2} \frac{Q^{2}}{C}$$

$$\Delta \omega_e = \frac{1}{2} \frac{Q^2}{C^{pp}} - \frac{1}{2} \frac{Q^2}{C^2} = \frac{1}{2} \frac{Q^2}{C^2} \left(\frac{1}{C^2} - \frac{1}{C^2} \right)$$

$$= \frac{1}{2} \frac{Q^2}{C^2} \left(\frac{|E_0 Q_1|^2}{|D_0 Q_2|^2} + \frac{1}{2} \frac{|Q_1|^2}{|D_0 Q_2|^2} \right)$$

$$= \frac{1}{2} \frac{Q^2}{C^2} \left(\frac{|E_0 Q_1|^2}{|D_0 Q_2|^2} + \frac{1}{2} \frac{|Q_1|^2}{|D_0 Q_2|^2} \right)$$

$$= -\frac{1}{2}Q^{2}(.99)\frac{\mathcal{E}_{od}}{bL5/16/09}$$

$$= -\frac{199}{2}Q^{2}\mathcal{E}_{od}$$

$$= bL$$

Problem 2. (20/200 points)

The plate separation of a lossless parallel-plate TEM line many wavelengths long (length D = 100.25λ) very slowly increases from end A to end B, as illustrated. This increases the characteristic impedance of the line from Z₀ at the input end A, to 4Z₀ at the output end B. This transition from A to B is so gradual that it produces no reflections. End B is terminated with a resistor of value 4Z_o

a) What is the input impedance \underline{Z}_A seen at end A? Explain briefly.

ZA = Zo

Explanation:

Because impredence is voltage fourment the input voltage/current ratio is Zo and there is no reflected wave to reduce the input voltage.

b) If the sinusoidal (complex) input input voltage is \underline{V}_A , what is the output voltage \underline{V}_B ?

Since impedences $V_B = V_{AC} - 2j V_a$ That junction $V_B = V_{AC} - 2j V_a$

Problem 3. (25/200 points)

At t = 0 a switch connects a voltage V to a passive air-filled short-circuited TEM line of length D and characteristic impedance Z_0 , as illustrated. Please sketch and quantify dimension:

a) The line voltage v(z) at t = D/2c.

8/8

b) The current $i_B(t)$ through the short circuit for 0 < t < 2D/c.

 $\int_{1}^{\infty} = -1$

The time 48

axis is correct
but I deducted
half marks here for
forgetting the factor of 2

 $i_B(t)$ 0 $\frac{i_B(t)}{2o}$ 0 $\frac{2D/c}{2}$

c) The current $i_A(t)$ from the voltage source (z = 0) for 0 < t < 3D/c.

have qualified as a carry fund since it is intrinsically linked to (b), however, I deducted marks for omitting the same current jump as in (b) in the last 1/3 rd of the time series

