6.033 Spring 2009, Quiz 1 Solutions Page 2 of 16

I Reading Questions

The following questions refer to Herbert Simon’s paper, “The Architecture of Complexity” (reading #2).
1. [2 points]: Simon’s notion of hierarchy organizes a collection of components by their
(Circle the BEST answer)
A. physical containment relationships
Z/ B. names and access patterns
L @ strengths of interaction

2. [2 points]: Simon argues that systems naturally evolve in hierachical form because
(Cirecle the BEST answer)
@ hierarchies are inherently stable
B. hierarchies are easily described

ki

C.sa cLomygnt in a structure of size N can be accessed in logN steps

35 [6 points]: Based on the description of the X Window System in the 1986 paper by Scheifler and
Gettys (reading #5), which of the following statements are true?
(Circle True or False for each choice.)

X’s client/server architecture ensures that one misbehaving client cannot interfere with
ing on the same display.

A. True / Fal
other clients

O/ Answer: False. For example, one client could use the window id of another client to write to its
2 window.

B. True / False X’s asynchxonous protocol ensures that clients never have to wait for a network round-
trip time for the server to respond to a request.

Answer: False. If the client\needs some information from the server, such as a window id or the
contents of a pixmap, it must wait for the server’s reply.

C.@ / False The X protocol always requires the server to send an exposure event to the client to
redraw its window when an obscured window becomes visible.

by

6.033 Spring 2009, Quiz 1 Solutions Page 3 of 16

. True / False

4. [6 points]: Based on the description of the UNIX file system in the 1974 paper by Ritchie and
Thompson (reading #6), which of the following statements are true?
(Circle True or False for each choice.)

/ False The kernel does not allow users to create hard links to existing directories.

Answer: False. The superuser may create a link to an existing directory, for example while creating

the superuser.

application can ask the kernel to read any file by specifying its i-node number, as
long as that i-node répresents a file that the application has permissions to read.

Answer: False. No system call takes an i-number as argument.

True / @ File names and i-node structures are stored within the data blocks of their containing
directory.

v

5. [6 points]: Based on the description of the MapReduce system in the 2004 paper by Dean and
Ghemawat (reading #8), which of the following statements are true?
(Circle True or False for each choice.)

apReduce will start multiple copies of the last few map or reduce tasks, to attempt
pite slow or failed nodes.

Answer: True.
to finish quickly

. True / False To achigye locality, map workers always execute on the same machine as the input data

that they consume.

Answer: False. The master tries to place map workers with the input data, but if it can’t it places
them elsewhere (preferentiallj\nearby in the network topology).

. True / Intermediate data passed between the map workers and reduce workers is stored in the

Google File System (GFS).

Ve

6.033 Spring 2009, Quiz 1 Solutions Page 4 of 16

6. [8 points]: The following question refers to the Eraser system, by Savage et al. (reading #7).

Consider the following snippet of code, as part of a larger system:

Lock L1;
Lock L2;
inmt =

function foo() {
acquire (L1} ;
print {x) ;
release (L1) ;

}

function bar (int v)
acquire (L2) ;
if (v == 0) {
print(x) ;

}

release (L2) ;

}

The functions foo () and bar () are executed from separate threads, but Eraser never flags an error.
Which of the following reasons might explain this?
(Circle ALL that apply)

)(foo () and bar () both execute, but never at the same time, so no race condition actually occurs

_>(B. foo () and bar () run concurrently, but bar () is always called with 1 as an argument
\)@f Every time foo () or bar () is called, an additional lock L3 is also held

X D. The value of x is changed for the last time before either foo () or bar () are called for the first time.

s

6.033 Spring 2009, Quiz 1 Solutions Page S of 16

II FaceFeeder

Inspired by Design Project 1, Ben BitDiddle decides to build a dataflow processing system for Facebook
feeds. A Facebook feed is a stream of notifications, informing Facebook users of changes to a given friend’s
profile page.

Users upload programs, or operators, that are run by Ben’s dataflow server. Operators can read from one
or more feeds, and produce outputs which are themselves feeds. Users may subscribe to different feeds to
receive alerts. Multiple users may subscribe to the same feed, and feed alerts are delivered asynchronously
(e.g., via email.)

As an example of a FaceFeed application, one user might create an operator that combines their friends’
*25 things you didn’t know about me” lists into “a whole lot of things you didn’t know about a whole lot
of people” list. Another user might write an operator that takes in a stream of text and produces a graph
showing the most common words in that stream. A third user might combine these together to produce a
graph of the most common words used in his or her friends’ “25 things you didn’t know about me” list.

7. [8 points]: As a first approach, Ben decides to run all operators in the same address space, in a
single process, with each operator running in a thread. His thread scheduler is pre-emptive, meaning
that it can interrupt one thread and switch to another. Alyssa P. Hacker warns him that a single process
is a bad idea, because running operators in the same process only provides soft modularity between
them. Which of the following are problems that could arise in this design?

(Circle ALL that apply)

erator might corrupt the memory of another operator.

/ % ?‘;?gﬁerator might produce improperly formatted results, and send them to another operator, causing
t operator to crash.

@Wamr might execute an illegal instruction, causing the process running the operators to crash.

D. Omtor might never relinquish the CPU, preventing other operators from running.

6.033 Spring 2009, Quiz 1 Solutions Page 6 of 16

8. [8 points]: Based on Alyssa’s observation, Ben decides to switch to a new design where each

operator runs in its own process, with its own address space, and with operators communicating only

indirectly via the kernel. The OS handles scheduling of the processes, and is also pre-emptive. He

claims this provides strong modularity and will prevent the problems Alyssa mentioned. Alyssa agrees

that this will fix some of the problems with a single address space, but says it doesn’t completely

protect operators from each other. Which of the following are problems that could arise in this design?
(Circle ALL that apply)

A, (‘)?gp”erator might corrupt the memory of another operator.

®One ope€rator might produce improperly formatted results, and send them to another operator, causing
thét operator to crash.

C. Onya@tor might execute an illegal instruction, causing the processes running other operators to
crash.

D. Oné@tm might never relinquish the CPU, preventing other operators from running.

Ben decides to continue with his one-process-per-operator desgin. Because operators aren’t running in the
same address space, Ben needs to use a kernel structure to exchange data between them.

Ben thinks that users of feeds will often be interested in the most recent updates first. Because of this,
he decides to design the system so that upstream operators first send their newest items to downstream
operators. To achieve this, he uses a stack abstraction rather than a queue like the bounded buffer we studied
in class.

Ben decides to add two new routines to the kernel, put_stack and get_stack, which add an item to a
stack and receive an item from a stack, respectively. Adjacent operators in the data flow graph exchange
data by having the upstream operator call put_stack and the downstream operator call get_stack.

His implementation of these routines is listed on the following page.

6.033 Spring 2009, Quiz 1 Solutions Page 7 of 16

// add message to stack, blocking if stack is full
// stack size is N
// initially head = N
// buffer is a 0-indexed array of N message slots
// stack.lock is a lock variable associated with the stack
put stack(stack, message):
while true:
if stack.head > 0:

acquire (stack.lock)
stack.head = stack.head - 1
release (stack. lock)

acquire (stack.lock)
stack.buffer[stack.head] = message
release (stack.lock)

return
else
yvield() //let another process run

//get next message from stack, blocking if stack is empty
get stack(stack) :
while true:
if stack.head < N:

acquire (stack.lock)
message = stack.buffer[stack.head]
release (stack.lock)

acquire (stack. lock)
stack.head = stack.head + 1
release (stack.lock)

return message
else
vield() //let another process run

6.033 Spring 2009, Quiz 1 Solutions Page 8 of 16

Notice that Ben’s implementations acquires and releases stack . lock several times in each function. Ben
claims this improves the performance of his implementation (versus an approach that acquires the lock and
holds it for the duration of several operations).

Suppose that two operators, o; and o are exchanging data via a stack s, and they perform the following
sequence of operations. Here, time advances with the vertical axis, so if one operation appears above another
operation, it finishes executing before the other operation begins. If two operations appear on the same line,
it means they execute concurrently, and that arbitrary interleavings of their operations are possible (except,
of course, that two operations cannot both be inside a critical section protected by stack. lock.)

01 | 02
put_stack(s,m1)
put_stack(s,mso) | m = get_stack(s)
put_stack(s,ms)

9. [14 points]: Assuming N = 4 and head = 4 initially, after the above sequence of operations
run, which of the following are possible states of the stack and the value of the m variable resulting

from the call to get_stack in 02?
(Circle ALL that apply)

® ® © .

m = Mo m = mi m = empty m = Mo
Stack Stack Stack Stack
0: empty 0: empty 0: empty \0: empty
1: empty 1: empty 1: empty Ix empty
2: m3 2:mg3 2:mg 2 }Qg
3:my 3:mo 3my 3: m‘g
N
/ . gut mi

puk w1z l et
(. Weadh - ‘j
2 ki/(‘j ."_—j P"'\S%
.
head 4+

Pkl— m3

6.033 Spring 2009, Quiz 1 Solutions Page 9 of 16

10. [6 points]: After Ben implements FaceFeed, his users create a dataflow program that consists
of a long pipeline of many single-input, single-output operators. Ben runs this program in FaceFeed
on a single core machine and finds that the performance isn’t good enough. He decides to switch
to a multi-core machine, but finds that, even though the operating system is properly scheduling his
operators on different cores, he doesn’t get much of a parallel speedup on this new machine. Which

of the following are possible explanations for this lack of speedup?
(Circle ALL that apply)

One of the operators is much slower than the others, so its execution time dominates the total execution
of the pipeline.

&/ B. Allof theyerators are about the same speed, so there is little opportunity for parallelism in the graph.

C. One of the operators is much faster than the others, and those other operators dominate the execution
time gf the graph.

6.033 Spring 2009, Quiz 1 Solutions Page 10 of 16

IIT' BeanBag.com

You’re running BeanBag.com, a food delivery service. Your customers place orders over the Internet to your
order server, using special client software that you supply to them. The server maintains, for each customer
account, the list of items that the customer currently has on order. The order server communicates with a
separate warehouse server that arranges for shipping of items.

Your order server supports three requests:

e CHECK.ORDER {acct): given an account number, returns the list of items in that account’s current
order.

e ADD_TO_ORDER (acct, item): add an item to the list of items an account has on order. Returns
the item.

e SHIP_ORDER (acct): directs the warehouse server to ship the account’s current item list by truck
to the customer. Returns the list of items that will be shipped.

Your order server is single threaded. The code for your server is given on the following page.

6.033 Spring 2009, Quiz 1 Solutions

server () :
while true:
request = RECEIVE REQUEST ()
process_request (request)

process_request (request) :
if request.type == CHECK ORDER:
reply = process_check (request)

else if request.type == ADD TO ORDER:

reply = process_add(request)
else if request.type == SHIP ORDER:
reply = process_ship (request)
else
reply = "error"
SEND REPLY (reply)

process_check (request) :
reply = orders|[request.acct]

return reply

process add (request) :

Page 11 of 16

orders [request.acct] = append(orders[request.acct], request.item)

reply = "added " + request.item
return reply

process ship (request) :
otmp = orders[request.acct]
orders [request.acct] = empty

send an RPC to the warehouse server, asking for otmp to be shipped

wait for reply from warehouse
reply = "shipped " + otmp
return reply

o

o\

6.033 Spring 2009, Quiz 1 Solutions Page 12 of 16

The order server has one CPU and keeps all its data in memory; it does not use a disk.

The initial version of the client software sends a request message to the order server when the customer
clicks on the Check, Add, or Ship button, waits for a reply from the order server, and displays the reply to
the customer. The client always waits for one operation to succeed before submitting the next one. Neither
the client nor the order server does anything to deal with the fact that the network can lose messages.

11. [10 points]: The network between the client and order server turns out to be unreliable: it
sometimes discards their messages. The network between the order server and the warehouse server
is perfectly reliable. Which of the following problems might customers observe that could be caused

by the network failing to deliver some messages between client and order server?
(Circle ALL that apply)

Thyieﬁi software could wait forever for a reply from the order server.
@ The QI,IS{@I might click on the Ship button but BeanBag might never ship the order to the customer.

@ The customer might click on the Ship button, receive no reply from the order server, but still receive
the items in the current order from BeanBag.

D. The cus@t be shipped two of an item that he or she Added only one of.

12. [8 points]: You modify the client software to re-send a request every five seconds until it gets
a reply from the order server. You make no modifications to the servers. Which of the following

problems might your modification cause?
(Circle ALL that apply)

@.\T/hewﬁomer might be shipped two of an item that he or she Added only one of.

B. The customer might Add some items to the order and get replies, then click on Ship, and get a reply
ith an empty item list.

6.033 Spring 2009, Quiz 1 Solutions Page 13 of 16

C. Theetstomer might Add some items to the order and get replies, then click on Ship, get a reply with
e correct item list, and then receive two distinct shipments, each with those items.

6.033 Spring 2009, Quiz 1 Solutions Page 14 of 16

You decide that you need higher performance, so you convert the code to use a threading package, with
pre-emptive scheduling. The order server starts up a new thread to serve each request. In order to avoid
races your new code holds a lock when manipulating customer orders.

New or modified lines are in bold.

Lock lock;
server () :
while true:
request = RECEIVE REQUEST ()
create thread(process request, request)

process_request (request) :
if request.type == CHECK_ORDER:
reply = process_check (request)
else if request.type == ADD TO ORDER:
reply = process_add(request)
else if request.type == SHIP ORDER:

reply = process_ship (request)
else
reply = "error"

SEND REPLY (reply)
exit_thread()

process_check (request) :
acquire (lock)
reply = orders|[request.acct]
release (lock)
return reply

process_add (request):

acquire (lock)
orders [request.acct] = append(orders [request.acct], request.item)
reply = "added " + request.item

release (lock)
return reply

process_ship (request) :
acquire (lock)
otmp = orders|[request.acct]
orders [request.acct] = empty
release (lock)
send an RPC to the warehouse server, asking for otmp to be shipped
wait for reply from warehouse
reply = "shipped " + otmp
return reply

6.033 Spring 2009, Quiz 1 Solutions Page 15 of 16

Your friend predicts that threading will not help performance, since your order server has only one CPU.

You measure the total throughput and per-request latency with the new and the old order server using a col-
lection of machines running simulated clients. Each generates a sequence of CHECK_ORDER, ADD_TO_ORDER,
and SHIP_ORDER requests, issuing a new one as soon as the server replies to the previous request. Each
client machine generates requests for a different account. You measure throughput in total requests served
per second. You should assume that it takes zero time to switch between threads, that the time to acquire
a lock takes no time beyond waiting for the current holder (if any) to release it, and that function calls and

returns take zero time.

13. [10 peints]: It turns out your friend is not correct. Which of the following are true about the
throughput of the threaded server, compared to the original server?
(Circle ALL that apply)

>(A. The average per-request latency is lower.

(/{S‘imultaneous requests in the server have to wait for each other to release the lock, leading to lower
throughput.

. A thread for one client can be in process_check () while a thread for another client is in pro-
cess_add (), leading to higher total throughput.

D.)A thread for one client can be in process_check () while a thread for another client is in pro-
cess_ship (), leading to higher total throughput.

o

6.033 Spring 2009, Quiz 1 Solutions Page 16 of 16

At your friend’s insistence you replace the order server with a shared-memory multiprocessor, and you
measure its performance as above. You find that performance has not increased significantly beyond your
single-processor deployment.

14. [6 points]: You hope to increase performance still further on your new multiprocessor. Which of
the following would have the greatest positive effect on performance, while preserving correctness?
(Circle the BEST answer)

A. Have a separate lock for each request, so that, for example, process_check () calls
acquire (check lock) and process.add () calls acquire (add.lock).

acquire (locks [reguest.acct]).

\}@(ﬁave a separate lock for each account, so that, for example, process_check () calls

%

C. Delete all the acquires and releases.

D. Delete the acquires and releases, and add an acquire (lock) at the start of
process_request {),and a release (lock) just before the exit_thread ().

End of Quiz I

6.033 Spring 2009, Quiz 3 Page 2 of 7?

I Reading Questions

1. [4 points]: Based on the description of the Witty worm in “Exploiting Underlying Structure for
Detailed Reconstruction of an Internet-Scale Event”, by Kumar, Paxson and Weaver (reading #18),

which of the following are true?
(Circle True or False for each choice.)

o

of / A\}ﬁle @ Bugs in the worm’s design made Witty’s behavior harder to analyze.

B. True / @ To remain effective at detecting worms, it is important for network telescopes to keep
X their IP address ranges secret.

2. [4 points]: Which of the following hints appear in Butler Lampson’s “Hints for Computer System
Design” paper (reading #20), possibly in different words? Mark each True if it appears in the paper,

and False if it does not.
(Circle True or False for each choice.)

?X. True / (False Keep secrets in an implementation, hiding from clients aspects that might change.

7, \/Bf True / Implementations are more important than interfaces, because implementations determine
/ {"T performance.

KC. ue)/ False On coding: don’t get it right, get it written; you can always fix it later.

7
\/A True / @@)Keep caches small: when in doubt, flush it out.

6.033 Spring 2009, Quiz 3 Page 3 of 2?

A.

B.

Ce

D.

A.

B.

3. [8 points]: Based on the paper “Why Cryptosystems Fail”, by Ross Anderson (reading #17), which
of the following are true?
(Circle True or False for each choice.)

ue)/ False The paper argues that the traditional threat model for cryptosystems is wrong.

True / @ The paper argues that secure systems cannot be designed the same way safety critical

systems are. \/

True / @ yM security breaches require that the thief determine both your account number and
PIN.

\
True / Fals Ftéle bank’s ATM network to provide access for a user from another bank, both banks
must know the PIN key corresponding to the user.

4. [8 points]: Based on the description of System R in the paper “The Recovery Manager of the
System R Database Manager” by Gray, McJones, et al. (reading #21), which of the following are true?
(Circle True or False for each choice.)

True / RAM buffering of disk I/O helps ensure atomicity.

True / @ Shadowc/opies, without a log, are sufficient to ensure atomicity in the presence of
concurrent transaction$ that both update the same file.

C.(i‘r}fB/ False A L@@saction is guaranteed to survive a crash once its log entry is written to memory.

D.

True / \@}e Uncgémitted transactions may have issued writes before the last checkpoint. Therefore
checkpoints may include incomplete transactions.

6.033 Spring 2009, Quiz 3 Page 4 of ??

5. [8 points]: Based on the paper “Beyond Stack Smashing: Recent Advances in Exploiting Buffer
Overruns”, by Pincus and Baker (reading #16), which of the following are true?
(Circle True or False for each choice.)

A. True / @ By not allowing writes outside of the bounds of objects, Java eliminates all risk of attacks
based on stack smashing, assuming that the VM and any native libraries are bug free.

B. @I False Setting the permissions on the stack memory to prevent execution of code would foil
attacks based on “return into lilfe”.

C. 'fI‘rue / False Making the stack’begin at a memory location chosen randomly at runtime would foil the
original stack smashing exploit.

- /

D. @1{% / False Using function] pointers presents additional opportunities for arc injection.

6. [8 points]: Based on the description of ObjectStore in the paper “The ObjectStore Database
System” by Lamb, Landis, et al. (reading #23), state whether each of the following is true or false.
(Circle True or False for each choice.)

A. True / 2 If an existing program, with its own implementation of lists and sets, wants to use
ObjectStore to make its data\p€rsistent, it must switch to ObjectStore’s list and set collections.

B. True / @ ObjectStore ;}ﬁ:ds to know the location of all pointers in all persistent data structures.

C. True / (False The caching/[ézol assumes the programmer will obtain a lock before modifying a
persistent object.

D. G[‘r\qu False The locking pr(?tgol always allows applications to execute concurrently, as long as they
are not accessing the same object.

6.033 Spring 2009, Quiz 3 Page 5 of ??

7. [8 points]: Based on the description of Porcupine in the paper “Manageability, Availability and
Performance in Porcupine: A Highly Scalable Internet Mail Service™ by Saito, Bershad and Levy, state

whether each of the following is true or false.
(Circle True or False for each choice.)

A. True //False If all of the servers storing mailbox fragments for some user are down, the system will
not be abletd’ accept new mail for that .

B. True /(False Assume you have a large-scale Porcupine deployment, there are more concurrent users
than servers, and all users have similar’ usage patterns. Storing more mailbox fragments for each user
would reduce throughput.

C. True I@E& A user that fetches buﬂ%@’es not delete their mail from a Porcupine server twice in a row
can see different messages, even if no iew messages are received.

D. @ / False If one user’s mailbox?égment list is causing too much load on one server, Porcupine
can move just that user’s mailbox fragment list to another server.

%

6.033 Spring 2009, Quiz 3 Page 6 of ??

II BLOP

Ben Bitdiddle is building a distributed gambling system called Ben’s Land Of Poker (BLOP). In BLOP, users
play hands of poker (cards) against each other. Each user is given two private cards that the other users can’t
see. Three additional public cards (which can be seen by all users) are revealed one-by-one. Users place bets
in four rounds of betting, one after users receive their two cards, and one after each public card is revealed.
Bets are in dollars, are > 0, and are not more than a user’s remaining balance. At the end of the fourth round
of betting, the user with the best hand (according to the rules of poker) wins.

Each user in BLOP has an account with a balance that is stored on one of BLOP’s servers. Different users
playing in a hand may have their accounts hosted on different servers. Between hands, users can add money
to an account with a credit card. BLOP credits a user’s account when that user wins a hand. BLOP withdraws
from a user’s account whenever the user places a bet. During a given hand, one server is appointed a leader
that is responsible for running the hand: it draws the cards, transfers money from users’ accounts to a central
pot that contains the money bet so far, and sends data to the clients.

During a hand, clients talk only to the leader. The leader sends information about public and private cards to
the clients, who connect from their own desktop machines, and also updates the balances of accounts stored
on the disk of the non-leader servers (the subordinates) and the balance of the pot stored locally on the leader’s
disk.

The pseudocode used by the leader is as follows:

run_hand:
// (1) beginning of hand
curPot = 0
write (pot,0) // store value of pot on disk

for each client c:
// handMsg tells clients about their cards
sendRPC handMsg(privateCards[c]) to ¢

for (round in [0..3])
// collectBets does one round of betting with clients,
// returning each of their bhets
bets = collectBets(clients)

for each client c:

// servers is an array that stores the subordinate

£ server for each client’s account data

sendRPC deductMsg(c, bets[c]) to servers][c]

curPot = curPot + bets[c]

write (pot, curPot) // update value of pot on disk

if (round != 3) // last round is just for betting
sendRPC handMsg(publicCards[round]) to c

winner = computeWinner (hands)
sendRPC deductMsg(winner, —curPot) to servers[winner]
// (2) end of hand

6.033 Spring 2009, Quiz 3 Page 7 of ??

The code to process deductMsg on each of the servers looks as follows:

deductMsg (account, amt):
prevBal = read(account)
if (prevBal > amt):
write {account, prevBal - amt)
else
write (account, 0)

Assume that the network uses a reliable (exactly once) RPC protocol to between the leader and the subordinate
servers, such that the leader waits to receive an acknowledgment to each sendRPC request before proceeding.
Also assume that write operations are atomic—that is, they either complete or do not complete, and after
they complete, balances are on disk.

Initially, Ben’s servers run a hand without using any transactions, logging, or special fault tolerance. If the
leader does not receive an acknowledgment to an RPC within two minutes, it tells the clients the hand is
aborted but takes no other recovery action. If the leader crashes, the clients eventually detect this and notify
the users that the hand has aborted. Initially, the leader performs no special action to recover after a crash.

During a hand, each client is given up to two minutes to place a bet. If they do not respond within two minutes
(either because they left the hand, or their machine crashed), they forfeit the hand and lose any money they
may have bet (play continues for the other clients in the hand.)

8. [6 points]: Which of the following could go wrong if one of the subordinate servers crashes in the

middle of a hand, assuming only one hand runs at a time:
(Circle True or False for each choice.)

A. True / @i@ After the lea borts the hand, and the failed subordinate restarts, it is possible for the
sum of all of the on-digkbalances of the users in the hand to be greater than when the hand started.

B. @ / False After the leader aborts the hand, and the failed subordinate restarts, it is possible for the
sum of all of the on-disk balances of the users in the hand to be less than when the hand started.

%

6.033 Spring 2009, Quiz 3 Page 8 of 27

Alyssa P. Hacker tells Ben that he should use transactions and two-phase commit in his implementation of
BLOP. He modifies BLOP so that reads and writes of the pot and of user accounts on the subordinates are
done as a part of a transaction coordinated with two-phase commit and logs. All log writes go directly to an
on-disk log. Ben’s scheme operates as follows:

e Prior to beginning a hand (before the comment labeled (1)), the leader writes a start of transaction (SOT)
log entry and sends each subordinate a BEGIN message. Each subordinate logs an SOT log entry.

e Prior to any update to the pot, the leader writes an UPDATE log entry. Prior to any update to a user
account balance, subordinates write an UPDATE log entry.

e At the end of a hand (at the comment labeled (2)), the leader sends each subordinate a PREPARE
message for the transaction. If the subordinate is participating in the transaction, it logs a PREPARED
log entry and sends a YES vote to the leader. If the subordinate is not participating in the transaction
(because, for example, it crashed and aborted the transaction before preparing), it sends a NO vote.

e If all subordinates vote YES, the leader logs a COMMIT log entry and sends a COMMIT message to
each of the subordinates. Subordinates log a COMMIT record and send an ACK message.

e Otherwise, the leader logs an ABORT log entry and sends a ABORT message to each of the subordi-
nates. Subordinates log an ABORT record, roll back the transaction, and send an ACK message.

Assume Alyssa’s additions to Ben’s code correctly implement two-phase commit, and that the system uses
the standard two-phase commit and log-based recovery protocols for handling and detecting both leader and
subordinate failures and recovery. Both two-phase commit and log-based recovery were discussed in lecture.
Two-phase commit is described in Section 9.6.3 of the course notes, and log-based recovery is described in
Section 9.3.3 and 9.3.4 of the course notes.

Ben also modifies his implementation so that if one of the subordinates doesn’t respond to a deductMsg
RPC, the leader initiates transaction abort.

6.033 Spring 2009, Quiz 3 Page 9 of 77

9. [9 points]:
Which of the following statements about the fault tolerance properties of Ben’s BLOP system with

two-phase commit are true?
(Circle True or False for each choice.)

. True / If a subordinate crashes after the leader has logged a COMMIT, and then the subordinate

completes recovery, and the leader notifies all subordinates of the outcome of the transaction, it is
possible for the sum of all of the balances of the userryh{ hand to be less than when the hand started.

€) / False If the leader crashes before it has logged’a COMMIT and then completes recovery and
notifies all subordinates of the outcome of the transaction, the sum of all of the balances of the users in
the hand is guaranteed to be equal to the sum of their balances when the hand started.

True / I@s/ If the leader crashes after one Winmes has logged a PREPARE, it is OK for that
non-leader to commit the transaction, since the transaction must have completed on the subordinate.

10. [4 points]: Ben runs his system with 2 subordinates and 1 separate leader. Suppose that the

mean time to failure of a subordinate in Ben’s system is 1000 minutes, and the time for a subordinate

to recover is 1 minute, and that failures of nodes are independent. Assuming that each hand uses both

subordinates, and that the leader doesn’t fail, the availability of Ben’s system is approximately:
(Circle the BEST answer)

@499/500 / <. 5 ﬁ ")2

B. 999/1000

C. 999/2000
D. 1/1000 VT/%

6.033 Spring 2009, Quiz 3 Page 10 of ??

To increase the fault-tolerance of the system, Ben decides to add replication, where there are are two replicas
of each subordinate.

Ben’s friend Dana Bass suggests an implementation where one replica of each subordinate is appointed the
master. The leader sends messages only to masters, and each master sends the balance of any accounts it hosts
that were updated in a transaction to the other worker replica, after it receives the COMMIT message for that
transaction. Masters do not wait for an acknowledgment from their worker before beginning to process the
next transaction.

When a master fails, its worker can take over for it, becoming the master. When the failed replica recovers,
it simply copies the balance of all bank accounts from the new master and becomes the worker. Dana’s
implementation does nothing special to deal with the case where a COMMIT completes on a master and the
master fails before sending the transaction to the worker, which can result in the worker taking over without
learning about the most recent committed transaction.

11. [9 points]: Which of the following statements about this approach are true, assuming that failures
of masters and workers are independent, and that the leader node never fails:
(Circle True or False for each choice.)

AC’I@ / False Dana’s approach improves the availability (that is, the probability that some subordinate
responds to deductMsg for a givenTlient’s account) versus a non-replicated system, as long as the

worker node can take over for a failed master in less than the time it takes for the master to restart.

B. True / Dana’s implemeWsures single-copy serializability, since a user can never see
results of hands that reveal that the system is replicated.

.

C. True / Suppose Dana modifies her approach to have three replicas for each subordinate (two
workers and a master.) Compafed to the the approach with two replicas per subordinate, this three node
approach has lower availability since the probability that one of the three replicas crashes is higher than
the probability that one of two replicas crashes in the original version.

6.033 Spring 2009, Quiz 3 Page 11 of 2?

III BitPot

In order to back up your laptop’s files, you sign up with BitPot. BitPot is an Internet-based storage service.
They offer an RPC interface through which you can read and write named files. BitPot gives each of their
customers an identification number (cid, an integer). The RPC interface looks like:

putfile(cid, filename, content)
getfile(cid, filename) -> content

putfile () and getfile () send their arguments over a network connection to the BitPot server, and wait
for a reply.

BitPot provides a separate file namespace for each cid; forexample, getfile (1, "x") andgetfile (2,
"x™") will retrieve different data. Neither BitPot nor getfile () /putfile () do anything special to pro-
vide security. Here is what the BitPot server’s RPC handlers do:

putfile handler (cid, filename, content):
namel = "/customers/" + cid + "/" 4+ filename
write content to file namel on the BitPot server’s disk
return a success indication

getfile_handler (cid, filename) :

namel = "/customers/" + cid + "/" + filename
if file namel exists on the BitPot server’s disk:
content = read file namel

return content
else:
return a failure indication

You are worried about the security of your files: that other people (perhaps even malicious BitPot employees)
might be able to read or modify your backup files without your permission.

6.033 Spring 2009, Quiz 3 Page 12 of 2?

For all of the following questions, attackers have limited powers, including only the following:

Observe any packet traveling through the network;

Modify any packet traveling through the network;

e Send a packet with any content, including copies (perhaps modified) of packets observed on the net-
work;

e Perform limited amounts of computation (but not enough to break cryptographic primitives);
e Read and write the contents of the BitPot server’s disk (for attackers that are BitPot employees);

e Observe or modify the behavior of the BitPot server’s software (for attackers that are BitPot employees);

Attackers have no powers not listed above. For example, an attacker cannot guess a cryptographic key; cannot
guess the content of the files on your laptop; cannot observe or modify computations on your laptop; and
cannot exploit buffer overruns or other bugs on your laptop or BitPot’s servers (such as manipulating path
names used to read and write files).

You should assume that there are no failures (except to the extent that the attacker’s powers allow the attacker
to do things that might be construed as failures).

6.033 Spring 2009, Quiz 3 Page 13 of ??

Scheme One

You decide to encrypt each file you send to BitPot with a key that only you know, using a shared-secret cipher
(see section 11.4.2 “Properties of ENCRYPT and DECRYPT” in the course notes). When you want to back up
a file to BitPot, you call backupl ():

backupl (filename) :
plaintext = read contents of filename from your laptop’s disk
ciphertext = ENCRYPT (plaintext, K)
putfile(cid, filename, ciphertext)

and when you need to retrieve a file from BitPot, you call retrievel ():

retrievel (filename) :
ciphertext = getfile(cid, filename)
plaintext = DECRYPT (ciphertext, K)
print plaintext

cid is your BitPot customer ID and K is your cipher key.

Only you and your laptop know K. ENCRYPT and DECRYPT withstand all the attacks mentioned in 11.4.2.

12. [8 points]: Which of the following are true about Scheme One?
(Circle True or False for each choice.)

A. True / E@ﬁg\}ret rievel (f) will return exactly the same data that your most recent completed call
to backupl (£) for W f read from your laptop’s disk, despite anything an attacker might do.

B. @ / False Eavegm@r‘s watching packets on the network may see ciphertext but are very unlikely
to be able to figure out the plaintext content of your files.

C. @ll/e) / False BitRor’s employees may see ciphertext but are very unlikely to be able to figure out the
plaintext content of your files.

e

D. (I‘ru / False If someone modifies one of the files BitPot stores for you, retrievel () is guaranteed
-print randoﬁ'@tta (or to signal an error).

%

6.033 Spring 2009, Quiz 3 Page 14 of ??

Scheme Two

Your friend Belyssa says you need to use authentication, using STGN and VERIFY as described in section
11.3.4 of the course notes. She’s not sure quite how best to do this, and suggests the following plan.

Belyssa’s plan operates at the RPC layer, beneath putfile () /getfile (). The client (your laptop) and
the server (BitPot) each have a shared-secret signing key (Kc and Ks, respectively). Each SIGNs each RPC
message it sends, and VERIFYs each RPC message it receives. Each of them ignores any received message
that doesn’t verify. For simplicity, assume there is only one client and only one server, so that the server
doesn’t have to manage a table of per-client keys. The client and server both know both Kc and Ks.

// client putfile() and getfile() send requests like this:
send_request (msqg) :

T = SIGN(msg, Kc)

send {msg, T} to BitPot

// the server calls this with each incoming network message:
receive_request (msg, T):
if VERIFY (msg, T, Kc) == ACCEPT:
result = call putfile handler() or getfile_handler ()
send_reply (result)
else:
// ignore the request

send_reply (msg) :
T = SIGN (msg, Ks)
send {msg, T} to client

// the client calls this with each incoming network message:
receive_reply (msg, T):
if VERIFY (msg, T, Ks) == ACCEPT:
process msg (i.e. tell getfile() or putfile() about the reply)
else:
// ignore the reply

6.033 Spring 2009, Quiz 3 Page 15 of 7?

Only your laptop and BitPot’s server know Kc and Ks. SIGN and VERIFY withstand all the attacks men-
tioned in 11.3.4.

You execute the following procedure on your laptop using Scheme Two:

test () :

write "aaaa" to file xx
backupl (xx)

write "bbbb" to file yy
backupl (yy)

write "cccc" to file yy
backupl (yy)
retrievel (yy)

That is, you back up file xx, then you back up two different versions of yy, then you retrieve yvy. test ()
will print a value (from the call to retrievel ()).

13. [7 points]: Which of the following values is it possible for test to print?
(Circle ALL that apply)
A. aaaa)(,

(B.)bbbb / 67,}/
Ty

D. (7.7) insertécy message here (7.7)

6.033 Spring 2009, Quiz 3 Page 16 of 27

Scheme Three

Your other friend, Allen, is uneasy about the properties of Belyssa’s scheme. He proposes climinating
Belyssa’s changes, and instead STGNing and VERIFYing only in the backup and retrieve procedures.

Allen’s new backup (called backup?2 ()) includes SIGN’s authentication tag in the “content” it sends to
BitPot, and Allen’s new retrieve extracts and VERIFYs the tag from the data sent by BitPot.

backup?2 (filename) :
plaintext = read contents of filename from your laptop’s disk
ciphertext = ENCRYPT (plaintext, K)
T = SIGN (ciphertext, Kx)
what = {ciphertext, T}
putfile(cid, filename, what)

retrieve2 (filename) :

what = getfile(cid, filename)

{ciphertext, T} = what

if VERIFY (ciphertext, T, Kx) == ACCEPT:
plaintext = DECRYPT (ciphertext, K)
print plaintext

else:
// ignore the getfile reply

K is the shared-secret cipher key from Scheme One, which only you and your laptop know. Kx is a shared-
secret signing key known only to you and your laptop.

You execute the following procedure on your laptop using Scheme Three. (This is the same procedure as for
the previous question, but uses backup?2 () and retrieve2 ()).

test2 () :

write "aaaa" to file xx
backup?2 (xx)

write "bbbb" to file yy
backupZ (yy)

write "ccce" to file yy
backup2 (yy)
retrieve2 (yy)

6.033 Spring 2009, Quiz 3 Page 17 of 77

14. [7 points]: Which of the following values is it possible for test2 to print?
(Circle ALL that apply)

fA.)_aaaa
0y

@ bbbb L/ 2'/
E)ecee ki

D. (".7) insert witty message here (~.7)

6.033 Spring 2009, Quiz 3 Page 18 of ??

IV Systems Design Experience

There are known knowns.
There are things we know
that we know.

There are known unknowns.
That is to say
There are things that we now know
we don’t know.

But there are also unknown unknowns,
There are things we do not know
we don’t know.

15. [2 points]: The aforementioned quote is highly applicable to the design of large computer systems.
According to the guest lecture on May 11, who first uttered this sage advice?
(Circle the BEST answer)

A. Albert Einstein
B. Butler Lampson

C. Mahatma Gandhi

@ Donald Rumsfeld ?7/2,,

End of Quiz III

6.033 Spring 2009, Quiz 2 Solutions Page 2 of 17

I Reading Questions

1. [8 points]: Based on the Unison paper entitled “How to Build a File Synchronizer”, by Trevor
Jim et al., state whether each of the following is true or false.
(Circle True or False for each choice.)

intervening modifications, running it once leaves the file system on both machines in the same state

Aﬁ" / False File synchronization in Unison is idempotent, meaning that, in the absence of failures
as running it twice.

B. @ / False Synchronization in Unison is atomic, so that either all or none of the files are updated.

X

C. @ / False The Unix command touch changes a file’s modification time without altering its
conénts. If a file is touched first in one replica and then in another, a subsequent attempt at synchro-
X nization will report a conflict.

D. @ / False Unison maintains an archive file to avoid scanning the file system directory structure
Ywhen propagating changes.

Name: Solutions

6.033 Spring 2009, Quiz 2 Solutions Page 3 of 17

2. [8 points]: Based on the description of LFS in the paper “The Design and Implementation of a
Log-Structured File System” by Mendel Rosenblum and John K. Ousterhout, state whether each of

the following is true or false.
(Circle True or False for each choice.)

A. True / @ Relativye UNIX file system, LFS performs better on random read workloads.

B. True / Performance of LFS is generally better when the file system is using a larger fraction
of the total disk spacieyee reads are more likely to be sequential.

. @ / False Any disk writes made after the most recent checkpoint will be discarded during

recovery. ')(

D. True /@15} Supposd»s@te two large files (larger than available RAM) to disk, one written
sequentially and one in random order. LFS will perform equally well when reading each of these files
sequentially.

/

Name: Solutions

6.033 Spring 2009, Quiz 2 Solutions Page 4 of 17

3. [8 points]: Based on the description of RAID in the paper “A Case for Redundant Arrays of
Inexpensive Disks (RAID)” by David Patterson et al., state whether each of the following is true or

false.
(Circle True or False for each choice.)

A. d@ / False Assuming the disk provides no error detection or correction, a RAID 1 controller can

D

. firug / False Afi

detect that it has read a corrupt block from disk.

X

. True / @ ;/Afﬁ/icated parity disk (RAID 4) increases throughput over RAID with distributed

parity (RAID 5), 8y removing the overhead of parity-updates from other disks.

-disk RAID 4 array has a lower expected availability than a four-disk RAID 4
array (assume tliat] in each configuration, there is a single parity disk and each disk is identical—i.e.,
of the same size, type, age, manufacturer, etc.).

/ False Assuming the disk provides no error detection or correction, a RAID 5 controller can
correct errors in a corrupt block read from disk.

X

Name: Solutions

6.033 Spring 2009, Quiz 2 Solutions Page 5 of 17

4. [8 points]: Assuming that BGP works as described in the “Wide-Area Internet Routing™ paper by
Hari Balakrishnan, state whether each of the following is true or false.
(Circle True or False for each choice.)

A. True I@ An autonomous system (AS) will commonly announce the same routes to its upstream
providers and to i>tsg)eers.

B. / False ’s routers, which speak BGP to their upstream providers, must have a default route
to’send packets*to the rest of the Internet.

Lj' For the following two questions, assume that routes to MIT at all routers in the Internet have con-
/ %, verged, that there are no failures or policy changes, and that BGP MEDs are not used by any AS.

C. True / Falsg Suppose that MIT has two distinct upstream ISPs, both of whom advertise routes on
behalf of MIT. It is pdssible for packets sent from a given remote AS to traverse different autonomous
systems in their pdth to MIT.

D. @ / False pose that MIT has exactly one upstream ISP, which advertises routes on behalf of
MIT. It is possible for packets sent from some AS X fo MIT to traverse different autonomous systems
than packets sent from MIT to X.

Name: Solutions

6.033 Spring 2009, Quiz 2 Solutions Page 6 of 17

5. [8 points]: Based on the “TCP Congestion Control with a Misbehaving Receiver” paper by Stefan
Savage et al, state whether each of the following is true or false.
(Circle True or False for each choice.)

A. True / Wﬁdﬂ ACK division by only accepting ACKs for packet boundaries prevents commu-
nication wif aiyﬁg Daytona stack that acknowledges intermediate bytes in a packet.

B. @ I F alse><’[‘ CP Daytona’s implementation of optimistic ACKing asks the sender to retransmit
packets that were lost in transmission after being optimistically ACKed.

C. True / FalseJOpfimistic ACKing can be mitigated by a sender without modifying receivers.

D.@ / False Fixing DupACK spoofing with nonces requires the sender to remember nonce values
for at most one window size worth of packets.

Name: Solutions

6.033 Spring 2009, Quiz 2 Solutions Page 7 of 17

6. [6 points]: This question refers to the description of NFS “Case study: The Network File System
(NFS)” (section 4.5 in the course notes). In an attempt to improve the performance of his NFS server,
Ben Bitdiddle modifies the NFS protocol implementation at the server to immediately respond to
WRITE RPC requests, rather than waiting until the disk operation succeeds. Which of the following
statements about Ben’s new implementation are true, relative to the unmodified version?:

(Circle True or False for each choice.)

A / Ea‘fse Latency of read () system calls on the client may be lower.

B. @I F: Latency of write () system calls on the client may be lower.

/A

&

; e

[r C. True / Falge)Latency of close () system calls on the client may be lower.

Name: Solutions

6.033 Spring 2009, Quiz 2 Solutions Page 8 of 17
II Sliding Window

Ben Bitdiddle needs to transfer multi-gigabyte files from his radio telescope in California to his computer at
MIT. He gets a special deal from Speedy Sam’s Network Company, who supplies him with network-layer
service between California and MIT on a private network (not part of the Internet). Speedy Sam’s network
topology looks like this:

10,000,000 bytes / sec 1,000,000 bytes / sec
(bidirectional) (bidirectional)
= Queue e
H1 <t R Quele ¢ H2
Sender Speed of light delay: Each queue Speed of light delay: Receiver
0 seconds 5 .02 seconds
ke ianat capactity: 40 bidirectional
(bidirectional) packets (bidirectional)
Sliding window size: 10 packets
Data packet size size: 1,000 bytes
Acknowledgement packet size: |40 bytes
Sender retransmit timeout: 5 seconds

Figure 1: Ben’s network configuration, with initial network parameters.

H1 is Ben’s host in California; R is a router in the same room as H1; H2 is Ben’s host at MIT. Both links
are bi-directional, and the two directions operate independently. The H1—R link has a speed-of-light delay
of zero, and a capacity of 10,000,000 bytes/second in each direction. The R—H?2 link has a speed-of-light
delay of 0.020 seconds, and a capacity of 1,000,000 bytes/second in each direction. Router R has two packet
queues, one for each direction. When a packet arrives on a link, R adds it to the end of the queue feeding
the other link. Each queue has maximum length of forty packets: if a packet arrives and the relevant queue
already has 40 packets in it, R discards the packet. You can assume that the CPUs on H1, H2, and the router
are inﬁnitelym do not impose any delays due to computation).

Speedy Sam’s network carries IP packets. Ben’s computers have IP-layer software but don’t come with any
transport-layer software, so Ben decides to design his own transport protocol.

All data packets are 1,000 bytes, including IP and link-layer headers. Ben’s protocol splits the file to be
sent into a sequence of segments, each of which fits in a_packet, and numbers the segments sequentially
(these are sequence numbers). Each data packet header contains the sequence number of the segment of
data it contains; the sequence number field has enough bits to fit the largest possible sequence number.
Acknowledgment (ACK) packets are 40 bytes long.

Ben’s protocol uses a slidi i i i ize of 10 packets. To cope with the possibility

of lost packets, the sender re-sends each segment in the window every five seconds until it gets an ACK
covering that segment from the receiver. When the sender receives an ACK that advances the window by n
segments, it sends the next n segments as fast as the sender’s link to the router allows. The receiver sends
an ACK for each data packet it receives. Each ACK contains the sequence number of the lowest-numbered
segment that the receiver has not received (i.e. ACKs are cumulative). Whenever an as-yet-unseen segment
arrives at the receiver, the receiver hands the segment to the application (the destination part of the file
transfer program); the receiver does not give the application duplicate segments.

Name: Solutions

6.033 Spring 2009, Quiz 2 Solutions Page 9 of 17

7. [6 points]: At what approximate rate (in segments per second) will Ben’s protocol deliver a
multi-gigabyte file from HI to H2?

(Circle the BEST answer)
A. 1000 Seqenenk = \o0O oytes
[«
250
lo, ©00 (o0
C. 40 —s
— —
D. 25 b o
E. 10 Couk g veclivel
e l/ [0
— [agl =,
HO oY £5
.04 €€ omsif
FL(_?__ = |000
;o

P R——
8. [6 points]: If Ben wanted to double the rate at which the system delivers file data from H1 to H2,
what should he do?

(Circle the BEST answer)

A. Double the capacity of the HI—R link, to 20,000,000 bytes/second.

B. Double the capacity of the R—H2 link,to 2,000,000 bytes/second.

C. Double the maximum queue le in the router, to 80 packets.
@Double the window size, to 20 packets.
E. Double the speed-of-light delay of the R—H2 link, to 0.040 seconds.

e

Name: Solutions

6.033 Spring 2009, Quiz 2 Solutions Page 10 of 17

After a few months Ben’s budget is cut, and he decides to save money by renting a lower-speed network
from Speedy Sam. Sam reduces the capacity of the R—H?2 link to 1,000 bytes/second (i.e. just one packet
per second).

9. [6 points]: Ben starts a file transfer. His protocol sends out the first window of ten segments of
the file. How long will it take from the start of the transfer until the sender receives an ACK for the

last segment in that window?
(Circle the BEST answer)

. 0.040 seconds
. 1.020 seconds
. 1.040 seconds

2.020 seconds

2.080 seconds / . -

10.020 seconds

@ m = w—p

10.080 seconds

Name: Solutions

6.033 Spring 2009, Quiz 2 Solutions Page 11 of 17

10. [6 points]: Ben notices that his protocol at the receiver is delivering segments to the application
at a rate of less than half a segment per second. What’s the best way for him to increase that rate?
(Circle the BEST answer)

A. Increase the sender’s window size from 10 to 20 segments.
B. Decrease the sender’s timeout interval from 5 to 2 seconds.
@ Increase the sender’s timeout interval from 5 to 50 seconds.

D. Increase the router’s maximum quelieleyyﬂom 40 to 80 packets.

E. None of the above will help.

Name: Solutions

6.033 Spring 2009, Quiz 2 Solutions Page 12 of 17

IIT Atomicity

Ben Bitdiddle is building a transactional file system that can make updates to several files appear to be a
single, atomic action. He decides to implement his system using a mechanism similar to shadow copies of
files we discussed in class, which he calls shadow directories. Similar to a shadow copy of a file, a shadow
directory works by having the file system create a copy of a directory and all of its contents before changing
any of the files in that directory, and then using an atomic rename operation to install the new directory at
commit time.

Ben’s implementation is layered on top of the ordinary Unix file system calls. You may assume that the
Unix file system provides atomic implementations of link, unlink, and rename, as well as atomic reads and
writes of single disk sectors.

Ben begins by trying to build a system that provides all-or-nothing atomicity (i.e., if the system crashes
either all changes happen or none of them do) without isolation (i.e., where only one transaction runs at
a time.) Ben’s initial implementation is shown on the next page, where each function is named Txxx to
indicate that it is a transactional implementation. The Trecover procedure is run after the system crashes
and restarts, and before any other file system commands are processed. For brevity, we use the commands
doWrite and doRead; these open the specified file, seek to the specify offset, write or read the specified
bytes, and close the file. Assume that there is also a way for transactions to create and delete files, which we
do not show. Also assume that directories contain only files (not subdirectories).

Name: Solutions

6.033 Spring 2009, Quiz 2 Solutions Page 13 of 17

/ / Assume that the character "_" is never used in a user-supplied file or directory name
/ / ++ concatenates strings and converts ints to strings

function Thegin (directory):
a. mkdir ("new_" ++ directory)
for each file in directory:
copy (directory ++ "/" ++ file, "new_" ++ directory ++ "/" ++ file)

function Tcommit (directory) :
b. rename (directory, "junkdir")
C, rename ("new_" ++ directory, directory)
delete "Jjunkdir" and its contents

function Trecover (directory):
if (not exists(directory))
d. rename ("new_" ++ directory, directory)
if (exists("new_" ++ directory))
delete "new_" ++ directory and its contents
if {exists ("junkdir™))
delete "junkdir" and its contents

function Twrite (directory, file, bytes, offset, len):
fpath = "new_" ++ directory ++ "/" ++ file
doWrite (fpath,bytes, offset, len)

function Tread (directory, file, bytes,offset,len):

fpath = "new_" ++ directory ++ "/" ++ file
doRead (fpath, bytes, offset, 1len)

11. [6 points]:

/ False Ben’s implementation erfsures all-or-nothing atomicity in the face of system crashes,
assuming there is only one transaction running at a time.

.

Name: Solutions

6.033 Spring 2009, Quiz 2 Solutions Page 14 of 17

12. [6 points]: After which line in the above code is the commit point of Ben’s implementation?
(Circle the BEST answer)

A. Line a.

(B.)Line b.
C. Line c. /
D. Line d.

So far, Ben has assumed there is only one transaction running at a time.

Ben asks his friend Dana Bass to help him add support for concurrent transactions to his implementation.
Dana proposes that Ben modify his code so that it creates a temporary directory tmp_directory_TID
to contain the intermediate (non-committed) state of each transaction while it runs (where TID is a unique
identifier assigned to each transaction before it begins); this will prevent concurrent transactions from seeing
other concurrent transaction’s uncommitted updates.

Dana also proposes keeping multiple versions of the directory around. The idea is that the system will
increment a version number after each transaction runs, and that each new version will reflect the changes
made by one transaction. Successive transactions will start from the files representing the most recent
committed version before they began. She allocates a special version sector on disk, which contains the
current version number. Because it is only one sector, the version sector can be read and written atomically.

She suggests the following implementation (the implementation of Trecover is omitted for brevity; we
are not asking you to analyze the behavior of this code in the face of crashes):

Name: Solutions

6.033 Spring 2009, Quiz 2 Solutions Page 15 of 17

// Tis a data structure containing info about current transaction, created by Thegin

function Tbegin (TID, directory):
T.TID = TID
T.dir = directory
T.vers = read version sector
/ / name of a directory for the version this transaction is reading
T.versDir = T.dir ++ "_" +4 T.vers ++ "/"
/ / name of a temporary directory used by a transaction
T tmpDir = "tmp..™ ++ T.dir +¥ " " 4+ T.TID ++ "/
T.changed = {}

mkdir (T.tmpDir)
for each file in T.versDir:

copy (T.versDir++file, T.tmpDir++file)
return T

function Twrite (T, file, bytes, offset, len):
doWrite(T.tmpDir++file,bytes,offset, len)
T.changed = T.changed U file

function Tread (T, file, bytes,offset,len):
/ / read from temporary directory so transaction sees its own updates
doRead(T.tmpDir++file,bytes,offset, len)

function Tcommit (T) :
acquire (commitLock) // only one committer at a time

vers = read version sector
if (vers != T.vers): [/ getchanges from transactions that committed while we ran
latestVersDir = T.dir ++ "_" ++ vers ++ "/"

for each file in latestVersDir:
if (file not in T.changed)
copy (T.latestVersDir++file, T.tmpDir++file)

newVers = vers+l

newVersDir = T.dir ++ "_" ++ newVers ++ "/V
rename (T.tmpDir, newVersDir)

write newVers into version sector

release (commitLock)

Note that transactions in Dana’s implementation do not follow two phase locking (in fact, no locks are
acquired at all in Tread or Twrite!)

Name: Solutions

6.033 Spring 2009, Quiz 2 Solutions Page 16 of 17

Unfortunately, Ben runs this version of the code and finds that it doesn’t ensure serializable execution.

13. [10 points]: Which of the following statements about Dana’s code are true (assume that if two
transactions both write to the same file, they write different data to that file, and that a write may

depend on any data read prior to that write.)
(Circle True or False for each choice.)

A. ’@l False If Dana’s code were modified to use the a two-phase locking protocol where it acquires
a lock on a file (covering all versions of that file) in Twrite or Tread before reading/writing the
file and releases locks only after commit, it would be serializable.

b

B. True @ Dana’s code does not ensure serializability because one transaction may see another

transaction’s writes before that \oth7a‘msaction has committed.

C. e / False If Dana’s code were modified to abort during the execution of Tcommit when vers

!= T.vers, her code would bei?&ﬂble.

D. @ / False Dana’s code dowﬁre serializability because if two transactions both read and
update the same file, both of th¢prmay read a version of the file that does not include either of their

changes.

7/

|0

Name: Solutions

6.033 Spring 2009, Quiz 2 Solutions Page 17 of 17

Sometimes Ben notices that Dana’s implementation does result in a serial equivalent ordering of transac-
tions. For each of the following transaction interleavings generated by Dana’s code indicate whether it
represents a serial-equivalent execution, and if so, indicate the equivalent ordering. Assume that these trans-
action schedules run to completion and there are no crashes or aborts. Here “R f1” or “W f1” indicates a
transaction executed Tread (T, £f1...) or Twrite (T, £1, .. .); assume that if two transactions both
write to the same file, they write different data to that file, and that a write may depend on any data read
prior to that write.

A. B. C.
Tl T2, T1 T2 T1 T2
Tbegin(T1,d) Tbegin(T1,d) Tbegin(T1,d)
Tbegin(T2,d) Thegin(T2,d) Tbegin(T2,d)
R fl1 R fl R12
W fl Rf2 W 2
R fl1 W 2 R fl
W 1l W fl W f1
Tcommit(T) Tcommit(T) Tcommit(T)
Tcommit(T) Tcommit(T) W 3
Tcommit(T)

14. [8 points]: Write a serial equivalent schedule for each interleaving, or circle “Not Serializable”.
A) TL TR x
SE) WNoY ceciall t‘a))‘sf\/e

C> NeXx Secialiaable

2

End of Quiz II

Please ensure that you wrote your name on the front of the quiz,
and circled your recitation section number.

Name: Solutions

