
6.837 Introduction to Computer Graphics

Assignment 5: OpenGL and Solid Textures

Due Wednesday October 22, 2003 at 11:59pm

In this assignment, you will add an interactive preview of the scene and solid
textures. For interactive display, you will use the OpenGL API that uses graph-
ics hardware for fast rendering of 3D polygons1. You will be able to interactively
pre-visualize your scene and change the viewpoint, before using ray-tracing for
higher-quality rendering. Most of the infrastructure is provided to you, and you
will mostly need to add functions that send the appropriate triangle-rendering
commands to the API to render or “paint” each kind of Object3D primitive.
Finally, you will add new Material effects where the color of the material varies
spatially using procedural solid texturing. This will allow you to render checker-
board planes and truly satisfy the historical rules of ray-tracing.

The two parts of this assignment are mostly independent.

1 OpenGL Rendering

In OpenGL, you display primitives by sending commands to the API. The API
takes care of the perspective projection and the various other transformations,
and also “rasterizes” polygons,. i.e., it draws the appropriate pixels for each
polygon. How it does this is the subject of the following series of lectures on
the rendering pipeline. In addition, the infrastructure we provide takes care of
the user interface and how the mouse controls the camera.

Using OpenGL

To use OpenGL on Athena, you will first need to obtain access to the OpenGL
libraries and header files. To do this, from an Athena prompt, type:

add mesa
If you are using Windows, then you may need to download the OpenGL libraries
yourself from http://www.opengl.org.

To add an OpenGL rendering interface to your application, you will use
the class GLCanvas provided in glCanvas.h and glCanvas.C. They rely on an
updated version of light.C and light.h; on a new member method, paint, of

1On some configuration, software emulation might be used, resulting in slower rendering.

1

Object3D; and on new methods that will be added to your Camera class. Most
of the code for these routines is provided. You will need to write the paint()
routine for each Object3D subclass to render the primitives within the canvas.

To use the GLCanvas as the real-time front-end for your application, you will
need to create a GLCanvas object in your main routine and call the following
function:

glCanvas.initialize(SceneParser *_scene,

void (*_renderFunction)(void));

The initialize routine takes two parameters: The first is a pointer to the
global scene. The second is the function that will perform the raytracing. The
GLCanvas class is set up so that the renderFunction takes no parameters and
has a void return type. From within the real-time interface (with the mouse
cursor within the frame of the GL display window), you can call the render
function by pressing ’r’.

Once the initialize routine is called, the GLCanvas will take over control
of the application and will monitor all mouse and keyboard events. This rou-
tine will not return, although the application can be terminated by closing the
window or calling exit(0).

All files implementing OpenGL code should include the OpenGL header files:

// Included files for OpenGL Rendering

#include <GL/gl.h>

#include <GL/glu.h>

#include <GL/glut.h>

1.1 Camera and Object3D

First you will need to modify your camera implementation to control the inter-
active camera. Copy-paste the code provided in camera_additions.txt into
your camera files, and update it to re-normalize an re-orthogonalize the up,
direction, and horizontal vectors (similar to the camera constructor).

Use the left mouse button to rotate the camera around the center of the
scene, the middle mouse button to translate the scene center (truck), and the
right mouse button to move the camera closer to or further from the scene
(dolly). To prevent weird rotations of the camera, it is necessary to store the
original up vector of the camera and define a new “screen up” vector that is the
normalized orthogonal up vector for the current direction vector.

Next, you will add a virtual function void paint () to your Object3D class.
To test your code incrementally, do not make this function pure virtual = 0;,
but instead implement this method in Object3D with an empty function. This
way, you will be able to test your code even before you have implemented the
function for all subclasses.

You should now be able to test your viewer. No primitive will be displayed
because you have not yet implemented the appropriate paint methods, but the
canvas renders three axes depicting the world-space frame.

2

1.2 Group

Similar to the intersection method, a group implements paint by iterating over
all its children and calling their paint methods.

1.3 Triangle

OpenGL is based on polygons. You tell the API to render a polygon by first
telling it that you start a polygon, then describing all the vertices and their
properties, and finally closing the polygon. The code to specify just the positions
of a single triangle looks like this:

glBegin(GL_TRIANGLES);
glVertex3f(x0, y0, z0);
glVertex3f(x1, y1, z1);
glVertex3f(x2, y2, z2);

glEnd();

Alternatively, you can directly specify an array of floats for each vertex using
glVertex3fv(float *arr). Implement the paint method for your Triangle
class.

1.4 Normals and materials

OpenGL can also compute local illumination. However, it cannot easily compute
cast shadows. To take local illumination into account, you must provide the
material and normal information for the triangle.

First, you must update your Material and PhongMaterial implementation
and add a virtual void Material::glSetMaterial() const member func-
tion. This function will send the appropriate OpenGL commands to specify
the local shading model. Copy the code from material_additions.txt for the
Phong model.

For the paint method of each primitive, before sending any OpenGL geo-
metric command, you will need to call the void Material::glSetMaterial()
const member function to set up the GL material parameters. Do so in the
Object3D parent class, and call Object3D::paint() at the beginning of the
paint of each subclass.

To set the triangle normal, use one of the following commands before speci-
fying the vertices:

glNormal3f(float x, float y, float z); // List of floats
glNormal3fv(float *arr); // Array of floats

Remember that you can compute the normal of a triangle using a cross product.
Test your triangle paint routine with the simple test scenes provided.

3

1.5 Plane

OpenGL does not have an infinite plane primitive. To pre-visualize planes, you
will simply use very big rectangles. Project the world origin (0,0,0) onto the
plane, and compute two basis vectors for the plane that are orthogonal to the
normal �n. The first basis vector may be obtained by taking the cross product
between the normal and another vector �v. Any vector �v will do the trick, as
long as it is not parallel to �n. So you can always use �v = (1, 0, 0) except when �n
is along the x axis, in which case you can use �v = (0, 1, 0). Then the first basis
vector, b�1, is �v × �n and the second basis vector, b�2, is �v × b�1 Display a rectangle
from (-BIG, -BIG) to (BIG, BIG) in this 2D basis (Caution: OpenGL does not
like rendering points at INFINITY). In OpenGL, you may include 3n vertex
positions within the glBegin and glEnd commands to draw n triangles:

glBegin(GL_TRIANGLES);

glNormal3f(nx, ny, nz);

glVertex3f(x0, y0, z0);
glVertex3f(x1, y1, z1);
glVertex3f(x2, y2, z2);

glVertex3f(x2, y2, z2);
glVertex3f(x3, y3, z3);
glVertex3f(x0, y0, z0);

glEnd();

1.6 Sphere

OpenGL does not have a sphere primitive, so spheres must be transformed into
triangles, a process known as tessel lation 2 . You will implement the classic
sphere tessellation using angular parameters θ and ϕ. The number of steps in θ
and ϕ will be controlled by a command line argument -tessellation <theta>
<phi>. Deduce the corresponding angle increments, and use two nested loops
on the angles to generate the appropriate triangles. Note that θ should vary
between 0 and 360◦, while ϕ must vary between −90◦ and 90◦. You can use a
single glBegin(GL_TRIANGLES), glEnd() pair for the entire sphere:

glBegin(GL_TRIANGLES);
for (iPhi=...; iPhi<...; iPhi+=...)

for (int iTheta=...; iTheta=...; iTheta+=...)
{

//compute appropriate coordinates

//send gl vertex commands

2Actually, glu does have a sphere primitive, but you are not allowed to use this shortcut
for the assignment

4

glVertex3f(x0, y0, z0);

glVertex3f(x1, y1, z1);

glVertex3f(x2, y2, z2);

glVertex3f(x2, y2, z2);
glVertex3f(x3, y3, z3);
glVertex3f(x0, y0, z0);

}
glEnd();

You will implement two versions of sphere normals: flat shading (visible
facets) and Gouraud interpolation. For flat shading, you will use the normal of
each triangle, as you would for polygon rendering. For the Gouraud interpola-
tion version, you will use the true normal of the sphere for each vertex (set the
vertex normal before specifying each vertex position). Note how this improves
the appearance of the sphere and makes it smoother. OpenGL performs bilinear
interpolation between the color values computed at each vertex. Note that this
is not as good as the Phong interpolation described in class (which interpolates
the surface normals then performs the lighting calculation per pixel).

1.7 Transformation

Finally, you must handle transformations. OpenGL will do most of the work
for you. You only need to specify that you want to change the current object-
space-to-world-space 4x4 matrix. To do this, you first need to save the current
matrix on a matrix stack using glPushMatrix(). Then change the matrix using
glMultMatrix(GLfloat *fd). We have added a glGet() routine to the Matrix
class to construct a matrix with the appropriate structure. OpenGL matrices
created with this routine should be deleted when they are no longer needed:

glPushMatrix();
GLfloat *glMatrix = matrix.glGet();
glMultMatrixf(glMatrix);
delete[] glMatrix;

Then, recursively call the paint method of the child object. After this, you
must restore the previous matrix from the stack using:

glPopMatrix();

If you do not save and restore the matrix, your transformation will be applied
to all the following primitives!

2 Solid textures

Solid textures are a simple way to obtain material variation over an object.
Depending on the spatial location of the shaded point, different material prop-
erties (color, specular coefficients, etc.) are chosen. In this assignment, you will

5

implement a simple axis-aligned checkerboard texture that selects between two
Materials.

Checkerboard class

You will derive a class Checkerboard from Material. SceneParser has been
extended to parse CheckerBoard materials. Your CheckerBoard class will store
pointers to two materials, and is parameterized by the cell size (a float). The
prototype for the constructor should be:

CheckerBoard(Material *mat1, Material *mat2, float sizeCell);

First, handle this new material type in the interactive viewer by imple-
menting CheckerBoard::glSetMaterial(). Because OpenGL does not im-
plement general procedural texturing, you will simply call the corresponding
glSetMaterial() method of the first material.

Next, implement the CheckerBoard::shade routine used in your ray tracer.
For this, you simply need to decide which of the two materials’ shade function
will be called. Using a float-to-integer conversion function and the function
odd, devise a boolean function that corresponds to a 3D checkerboard. As a
hint, start with the 1D case, just alternated segments of size sizeCell, then
generalize to 2 and 3 dimensions.

Your checkerboard material can be used for fun recursive material defini-
tions. You can have a checkerboard where cells have different refraction and
reflection characteristics, or a nested checkerboard containing different checker-
boards. This notion of recursive shaders is central to production rendering.

3 What to Turn In

As usual, turn in your executable and modified source files.
Include a README.txt describing how long it took you to complete the

assignment, the major problems you encountered, and the description of any
extra-credit work that you did.

4 Hints

As usual, debug your code as you write it. Run intermediate examples to make
sure that sub-parts are sane.

Performances

In your code, you might want to extract the values that do not need to be
recomputed for each frame and cache them. For example, you might want to
store triangle normals or the tessellation coordinates of a sphere. As usual, there
is a trade off between speed and memory.

6

5 Ideas for Extra Credit

Perlin noise and turbulence; Wood; Marble; add matrices to solid textures;
Supersampling; Texture mapping (need for parameterization); Phong normal
interpolation; distribution ray tracing; subsurface scattering.

6 Other

New command line arguments

-tessellation nTheta, nPhi
(tessellation of the sphere)

-gouraud
(gouraud smooth shading for spheres)

7

